
USENIX Security ’25 Artifact Appendix: Double-Edged Shield: On the
Fingerprintability of Customized Ad Blockers

Saiid El Hajj Chehade§, Ben Stock‡, and Carmela Troncoso§†

§ EPFL, † Max-Planck Institute for Security and Privacy (MPI-SP) ‡ CISPA Helmholtz Center for Information Security

A Artifact Appendix

A.1 Abstract
In this work, we present three scriptless attacks to finger-
print ad-blocker configurations. We show that our attacks
(1) identify 84% of the fitler-lists, (2) reduce the anonymity
of privacy-aware users, in ad-blocker forum datasets, to a
median of 48 users (0.2% of the population) using only 45
rules out of 577K, (3) capture fingerprints stable against con-
stantly updated filter-lists, and (4) resist SoTA detectors and
mitigations.

At a high level, the associated artifacts include
1. the Main Fingerprinting Experiment [F], including

fingerprint algorithms, forum dataset collection, our
datasets, and evaluation and stats scripts. This compo-
nent reproduces results in sections 5, 6, and 7.2 of the
paper;

2. the Web Measurement Study [W], including ad-blocker
performance benchmarking and web-feature popularity
measurement over the web. This component reproduces
results in 7.1 and 7.3;

3. the PoC Honey Page [H], an example page implement-
ing a version of the attacks proposed. This component
verifies the functionality of our attacks.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Executing experiments from the artifacts does not pose any se-
curity risk on the evaluators, as the code (1) only manipulates
data associated with the experiments (included in the ./data
directory), and (2) sends GET requests to public services
and APIs (namely, GitHub) at a reasonable rate, to prevent
IP blocking. We also provide Docker containers to fully iso-
late the experimental setup. As for running the attacks in the
Honey Page, they do not pose any security risk as they execute
locally on the evaluator machine and only manipulate simple
DOM elements and CSS.

Regarding ethical and privacy concerns, our experiments do
not pose ethical or privacy risks. First, we scrape open-source
(GPL-3) ad-blocker forum posts storing publicly-available
information, which is standard practice in this line of work.

On top of that, we do not store personal information of users
and randomize their identifiers, to prevent privacy harms. Sec-
ond, our web measurements implement precautions to not
overload websites, like giving ample delay between visits (30
seconds). Our crawlers do not interact with the web pages
beside the initial visit.

A.2.2 How to access

All components of the artifact including both code and
datasets are accessible on zenodo.org/records/14736725. We
also host the experiments’ code (components [F] and [W]) on
GitHub at spring-epfl/flfp. We also host the exemplary PoC
honey pages (component [H]) on flfp-demo.github.io. The
source code is available at flfp-demo/flfp-demo-builder.

A.2.3 Hardware dependencies

We initially ran the experiments on a Linux Ubuntu Server
with 240 GB of RAM and 48 cores of Intel Xeon E5-2680.
We verified the code’s functionality on a MacBook M2 Pro
with 32 GB RAM. However, on any desktop machine with
fewer resources, running the fingerprinting algorithm on the
full dataset size (18K users) will take considerably more time
e.g., ≥ 16 hours.

A.2.4 Software dependencies

The main software required to run the artifacts is Docker
(available at https://docker.com). Other libraries are bun-
dled in the docker image we make available. All pieces of
code can run on the Linux operating system with Python 3.10
or higher installed. The code has been tested on Ubuntu 20.04
LTS. The code relating to main fingerprinting experiment
has also been tested on MacOS 14.2. We had several issues
running code on Windows, so we recommend running the
code on a Unix-based system.

A.2.5 Benchmarks

None.

https://zenodo.org/records/14736725
https://github.com/spring-epfl/flfp
https://flfp-demo.github.io
https://github.com/flfp-demo/flfp-demo-builder
https://docker.com


A.3 Set-up
A.3.1 Installation

Detailed instructions are available in the INSTRUCTIONS.md
included with the artifacts. We provide step-by-step instruc-
tions to set up the environments here:
[F] Main Fingerprinting Experiment. The instructions are
available in the repo’s README.md. In summary,

1. Download the code from Zenodo or clone the GitHub
repository, then cd into the filterlist-fingerprint
directory.

2. Create a GitHub API key and add it to the .env file (a
.env.example file is provided.)

3. Create ./data directory or extract provided data.

4. Pull the Docker image
docker pull saiidhc/flfp:usenix

5. Run the docker container using the command
docker container create -it
-env-file .env
-v $(pwd)/data:/flfp/data
saiidhc/flfp:usenix

6. Run experiments according to docs/REPRODUCING.md

[W] Web Measurement Study. After downloading the code
from Zenodo or cloning the GitHub repository, then cd into
the measurements-adblockers directory. Set up a Python
virtual environment with the libraries in requirements.txt.
After installing Docker, you can run the experiments directly
with the commands provided in its README.md.
[H] PoC Honey Page. To start a local version of the honey
page, make sure you have Python 3.8 or above and run the
command bash watch.sh from the source code of the honey
page repository.

In all future sections, commands mentioned regarding com-
ponents [F] and [W] are relative to their respective root direc-
tories mentioned above.

A.3.2 Basic Test

[F] Main Fingerprinting Experiment. From within the
docker container, run any command from README.md while
restricting the size of the dataset. For example, you can down-
load forum issues with python scripts/run/issues.py
forum=adguard pages_limit=1. If successful, you should
find the dataset collected in
data/issues/adguard/<timestamp>/issues_confs.csv.
[W] Web Measurement Study. Inside the
performance/docker folder of this codebase, run
bash run.sh logs/

../../websites_inner_pages-demo.json cpu 1
chrome
If successful, you should find the measurements stored in
performance/docker/chrome/data
[H] PoC Honey Page. After running bash watch.sh,
the honey page should be available by visiting http://
localhost:8000.

A.4 Evaluation workflow

Prior to running experiments, especially for Main Finger-
printing Experiment, we require scraping the user forum
datasets and the filter lists with the commands provided in
the repository and described in docs/REPRODUCING.md. This
step can be susceptible to network-related failures or API
rate limiting; so, to avoid these challenges, we provide pre-
scraped user forum datasets and filter-list datasets in Zenodo’s
data-usenix.zip.

The claims and experiments are distributed over the artifact
components as follows: [F] C1 to C5 and E1 to E5. [W] C6
and E6.

A.4.1 Major Claims

(C1): A substantial decrease in filter-rule coverage does not
lead to a strong reduction in filter-list coverage, across
all attacks. This is proven by experiment (E1) described
in section 6.1 of the paper whose results are reported in
table 3.

(C2.1): The attacks extract an entropy comparable to prior
work (figuring in Table 2), between 0.44 and 0.75. The
attacks uniquely identify between 14% and 20% of
privacy-aware users in the datasets. This is proven by
experiment (E2) described in section 6.2 of the paper
whose results are reported in table 4.

(C2.2): The higher the degree of ad-blocker customization,
the smaller the anonymity set of the privacy-conscious
user is. This is also proven by experiment (E2) whose
results are illustrated in figure 2.

(C3): The attacks can generate stable fingerprints that re-
sist the frequent updates of filter lists by maintainers.
The majority of rules usable for general fingerprinting
remain valid through a period of 1,400 days. This is
proven by experiment (E3) described in section 6.3 of
the paper whose results are reported in the same section
and illustrated in figure 3.

(C4): The adversary needs to control few domains (around
13) to identify almost all filter lists using domain-specific
rules. This is proven by experiment (E4) described in
section 6.4 of the paper whose results are reported in
table 5.

(C5): Increasing the robustness of filter-lists to detection
through forcing global rules can reduce entropy to below
0.2. The number of rules added is greater for AdGuard

https://github.com/spring-epfl/flfp
http://localhost:8000
http://localhost:8000


than uBlock Origin (e.g., 442K and 317K respectively
for CSS Animation attack) – which is manageable for
uBlock Origin according to claim (C6). (C5) is proven
by experiment (E5) described in section 7.2 of the paper
whose results are illustrated in figure 5.

(C6): Forcing ad-blockers to use all rules, AdGuard users
will suffer more from performance drawbacks – page
load time and CPU performance – than uBlock Origin
users. This is proven by experiment (E6) described in
section 7.1 of the paper whose results are in figure 4.

A.4.2 Experiments

(E1): [Filter-list Coverage Study] [30 human-minutes + 3
compute-hour]: We evaluate how many filter-list and
equivalence sets each attack and subset of rules can re-
identify. The expected result is a table similar to table
3 containing the number/proportion of identifiable filter
lists by each attack.
Preparation: From the repository base folder, navi-
gate with cd filterlist-fingerprint/. Download
filter lists and parse them with the commands in the
docs/REPRODUCING.md Section (I), or use the pre-
scraped filter lists from the ZIP. Similarly download
or extract user issue dataset.
Execution: Run commands in docs/REPRODUCING.md
sections II.1 and II.2. This will execute the fingerprinting
algorithm on user datasets and filter-list datasets.
Results: Run command
python scripts/paper_stats/6_1_rule_and_list_
coverage.py. The generated tables will
be outputed to the terminal and stored in
scripts/paper_stats/figures/rule_list_
coverage_*_*.csv.

(E2): [User Anonymity Study] [30 human-minutes + 6
compute-hour]: We evaluate the entropy and uniqueness
of user fingerprints (targeted and general fingerprints)
given our attacks and their filter-list coverage.
Preparation: Same as (E1).
Execution: Same as (E1).
Results: Run command
python scripts/paper_stats/6_2_reducing_
user_anonymity.py. The generated tables
will be outputed to the terminal and stored in
scripts/paper_stats/figures/attack_stats.csv.

(E3): [Fingerprint Stability] [30 human-minutes + 4
compute-hour]: We study how stable are rules that are
essential for uniquely identifying lists. We sample the
history of the filter list at various time points and iden-
tify rules that no longer exist by that time, to estimate
rule life-time. We generate a time plot of the propor-
tion of important rules that remain for the attacks over
ad-blockers.
Preparation: Same as (E1) and download or extract

the “github commits” data in docs/REPRODUCING.md
Section (I).
Execution: Same as (E1) and Section II.3 from
docs/REPRODUCING.md.
Results: Run command
python scripts/paper_stats/6_3_stability.py.
The generated figure will be out-
puted to the terminal and stored in
scripts/paper_stats/figures/rule_stability.csv.

(E4): [Domain Coverage] [30 human-minutes + 4 compute-
hour]: We iterate over domains appearing in domain-
specific rules to maximize the number of lists newly
identifiable if this domain is covered. We repeat it iter-
atively until either all lists are covered or no domain is
useful.
Preparation: Same as (E1).
Execution: Sections II.1 and II.5 from
docs/REPRODUCING.md.
Results: Run command
python scripts/paper_stats/6_4_domain_coverage.py.
The generated table will be out-
puted to the terminal and stored in
scripts/paper_stats/figures/domain_coverage.csv.

(E5): [Iterative Robustness] [30 human-minutes + 1
compute-hour]: Simulate a game between adversary and
maintainer. The maintainer enables global rules that the
adversary uses to uniquely identify lists, in turn the ad-
versary tries to find new rules to use.
Preparation: Same as (E1).
Execution: Sections II.1 and II.4 from
docs/REPRODUCING.md.
Results: Run command
python scripts/paper_stats/6_4_iterative_
robustness.py. The generated figures will
be outputed to the terminal and stored in
scripts/paper_stats/figures/iterative_
robustness_*.csv.

(E6): [Ad-blocker Performance Benchmarking] [20 human-
minutes + 6 compute-hour]: Increasing the number of
lists and measuring the CPU performance and load time
impact on popular websites.
Preparation: From the repository base folder, navigate
with cd measurement-adblockers/
Execution: Follow instructions in README.md > “Data
Collection” > “Ad-blocker CPU Performance”.
Results: Follow instructions in README.md > “Data
Processing” > “Ad-blocker CPU Performance”.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


