
USENIX Security ’25 Artifact Appendix: PICACHV: Formally Verified
Data Use Policy Enforcement for Secure Data Analytics

Haobin Hiroki Chen

Indiana University Bloomington

Hongbo Chen

Indiana University Bloomington

Mingshen Sun

Independent Researcher

Chenghong Wang

Indiana University Bloomington

XiaoFeng Wang

Indiana University Bloomington

A Artifact Appendix

A.1 Abstract

Ensuring the proper use of sensitive data in analytics under
complex privacy policies is an increasingly critical challenge.
Many existing approaches lack portability, verifiability, and
scalability across diverse data processing frameworks. We in-
troduce PICACHV, a novel security monitor that automatically
enforces data use policies. It works on relational algebra as an
abstraction for program semantics, enabling policy enforce-
ment on query plans generated by programs during execution.
This approach simplifies analysis across diverse analytical
operations and supports various front-end query languages.
By formalizing both data use policies and relational algebra
semantics in Coq, we prove that PICACHV correctly enforces
policies. PICACHV also leverages Trusted Execution Environ-
ments (TEEs) to enhance trust in runtime, providing provable
policy compliance to stakeholders that the analytical tasks
comply with their data use policies.

This artifact contains the Coq code, Rust implementation
of PICACHV, and several tools for benchmarking PICACHV.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Since PICACHV is designed to enforce data use policies, it
inherently does not pose any apparent security, privacy, or eth-
ical concerns. Moreover, all code, scripts, and documentation
are fully transparent and subject to human inspection.

A.2.2 How to access

Our artifact can be accessed on GitHub (evolving) and Zenodo
(permanent archive).

• GitHub: An evolving version at https://github.com/
hiroki-chen/picachv.

• Zenodo: A permanent archive: https://zenodo.org/
records/14639575

Special Note: A more detailed documentation for perform-
ing artifact evaluation can be found in our repository at
docs/ae-readme.md.

A.2.3 Hardware dependencies

We recommend conducting the evaluation on a high-end
server equipped with an x86 server-grade Intel CPU (e.g., 5th
Gen Intel Xeon) with Intel Trusted Domain Extension (TDX)
enabled and at least 64GB of RAM. While PICACHV does not
explicitly depend on TDX for performance evaluation, this
hardware feature ensures end-to-end security guarantees.

A.2.4 Software dependencies

We recommend running PICACHV on Ubuntu 24.04 for opti-
mal compatibility. Additionally, we provide a Docker image
for seamless testing and evaluation.

For those who wish to build the entire artifact from scratch,
the following packages must be installed beforehand.

• System-wide dependencies:
sudo apt install -y build-essential clang
python3 python3-pip python3-as-python
libgmp-dev pkg-config clang protobuf-compiler

• Rust toolchain:
curl –proto ’=https’ –tlsv1.2 -sSf
https://sh.rustup.rs | sh -s

• Install opam to get Coq:
bash -c "sh <(curl -fsSL
https://opam.ocaml.org/install.sh)"
opam init
eval $(opam env)
opam pin add coq 8.19.0

https://github.com/hiroki-chen/picachv
https://github.com/hiroki-chen/picachv
https://zenodo.org/records/14639575
https://zenodo.org/records/14639575


• (optional) Install mold:
cd /tmp
git clone –branch stable
https://github.com/rui314/mold.git
cd mold
sudo ./install-build-deps.sh
cmake -DCMAKE_BUILD_TYPE=Release
-DCMAKE_CXX_COMPILER=c++ -B build
cmake –build build -j‘nproc‘
sudo cmake –build build –target install

• Install python dependencies for benchmarks and data
preparations.
pip3 install polars coloredlogs pydantic
pydantic_settings pyarrow

If you are using docker, please install docker toolchains via
docker’s official installation guide at https://docs.docker.
com/engine/install/ubuntu/

A.2.5 Benchmarks

Our benchmarks primarily require two datasets: (1) a sim-
ulated dataset generated using TPC-H, which is included in
our artifact, and (2) case study data collected from Kaggle,
available in a separate repository attached as a submodule in
the main repository.

A.3 Set-up
First of all, clone our repository via git clone --recursive
https://github.com/hiroki-chen/picachv.git

• For docker users:
cd picachv
docker build -f docker/Dockerfile -t
picachv/picachv .

• There is currently nothing to do for users who want to
build the artifact from scratch.

A.3.1 Installation

We have already introduced all the installation steps in Sec-
tion A.2.4.

A.3.2 Basic Test

• Test if Coq works: This can be done by simply running
the following script in the picachv-proof-lib direc-
tory of our artifact.
./run --allow-admitted should yield no type errors.

• Test if picachv works:
cd ./benchmarks/micro/polars && cargo b -r
should yield no compilation errors.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The Coq formalism and security proofs are indeed
mechanically checked.

(C2): The overall runtime overhead is practical compared
to insecure baslines shown in the macrobenchmarks in
Figure 15 and Table 2.

(C3): The runtime overhead is less relevant to the policy type
but rather more impacted by the aggregation and project
operators that involve policy transformation.

(C4): Our policy is indeed expressive enough and can cap-
ture real-world use cases as demonstrated in Section
7.3.

A.4.2 Experiments

Preparation. In order to perform the following experiments,
we need to first generate the data tables and policies needed. In
our experiments, we use tpch-dbgen located in benchmark.
For the convenience of testing, we provide a Python wrapper
script called prepare_data.py.
(E1): End-to-end latency / macrobenchmark [30 human-

minutes + 30 compute-minutes + 10GB disk]: This ex-
periment showcases the runtime overhead of PICACHV
when compared with the non-policy-enforced tpc-h
queries. We illustrate the steps below.
How to: Generate the data and run the tpc-h bench-
mark.
Preparation: At the beginning please use the data
preparation script to generate the required data at scale
factor 1.0:
cd benchmark && python3 ./prepare-data.py
--scale-factor=1.0. Then generate the mock policy
files for testing.
cd ../tools/policy-generator
cargo run -r -- --output-path
../../data/policies/ --format parquet
Execution: Navigate back to benchmark/polars-tpc
and run the following:

• Insecure baseline: cargo run -r --
--query=[#num]

• TPC-H with PICACHV: cargo run -r
-- --query=[#num] --policy-path
../../data/policies --enable-profiling

Replace #num with the query number in Figure 15.
(optional) After the results of all queries are collected,
please open tools/plotting/macro.ipynb and fill in
baseline_polars and policy_polars the results just
obtained from the benchmark to produce Figure 15
shown in our paper.
Results: Should be able to reproduce the results in Fig-
ure 15.

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/


(E2): Microbenchmarks [30 human-minutes + 30 compute-
minutes + 5GB disk]: Microbenchmarks will measure 1)
the cost breakdown of each relational operator (Figure
14), and 2) two specific benchmarks on the project and
aggregate operators.
How to: Generate the data and run the microbench-
mark.
Preparation: Similar to E1, please have data generator
prepare_data.py at hand.
Execution: Due to heavy use of commands involved,
please kindly refer to the docs/AE-README.md for more
detailed instructions.
Results: This microbenchmarks should be able to re-
produce Figure 14 and 16.

(E3): Case studies [30 human-minutes + 30 compute-
minutes + 5GB disk]: This experiment shows that PI-
CACHV can indeed support real-world use cases.
How to: Run the case studies and get the results.
Preparation: None.
Execution: Navigate to the case_studies repository
and then run each the case study program. Due to heavy
use of commands involved, similar to E2, please kindly
refer to the docs/AE-README.md for more detailed in-
structions.
Results: Table 2 should be reproduced.

A.5 Notes on Reusability
We provide a brief guide on reusing our artifact for future
research. The Coq formalism of relational data structures and
semantics can be seamlessly integrated into other Coq projects
by simply downloading and importing the relevant files. Addi-
tionally, the security proofs serve as reference proof tactics for
verifying other security properties, extending beyond those
discussed in the paper.

The implementation of PICACHV is a standalone Rust li-
brary designed for integration with existing data analytics
frameworks. This integration requires appropriate code refac-
toring to invoke the corresponding PICACHV APIs. Addition-
ally, the runtime APIs can be exposed via foreign function
calls for non-Rust environments, though some manual effort
may be required.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


