
USENIX Security ’25 Artifact Appendix: MAESTRO: Multi-Party AES
Using Lookup Tables

Hiraku Morita
Aarhus University

University of Copenhagen

Erik Pohle
COSIC, KU Leuven

Kunihiko Sadakane
The University of Tokyo

Peter Scholl
Aarhus University

Kazunari Tozawa
The University of Tokyo

Daniel Tschudi
Concordium

Eastern Switzerland University of Applied Sciences (OST)

A Artifact Appendix

A.1 Abstract

Secure multi-party computation (MPC) enables multiple dis-
trusting parties to jointly compute a function while keep-
ing their inputs private. Computing the AES block cipher in
MPC, where the key and/or the input are secret-shared among
the parties is important for various applications, particularly
threshold cryptography.

In this work, we propose a family of dedicated, high-
performance MPC protocols to compute the non-linear S-box
part of AES in the honest majority setting. Our protocols
come in both semi-honest and maliciously secure variants.
Our implementation of the MPC protocols for three parties
will be the main artifact.

Our protocols have different trade-offs, such as having a
similar round complexity as previous state-of-the-art by Chida
et al. [WAHC’18] but 37% lower bandwidth costs, or hav-
ing 27% fewer rounds and 16% lower bandwidth costs. An
experimental evaluation in various network conditions using
three party replicated secret sharing shows improvements in
throughput between 28% and 71% in the semi-honest setting.
For malicious security, we improve throughput by 319% to
384% in LAN and by 717% in WAN due to sublinear batch
verification.

A.2 Description & Requirements

The artifact is software, given as source code, and the raw
benchmark data. The software part implements all protocols
that were evaluated experimentally and the raw benchmark
data is the raw resulting runtime/communication cost, etc.
when running the software on our servers.

A.2.1 Security, privacy, and ethical concerns

The source code provided does not pose any risk. There is a
minimal risk of a supply chain attack as the code uses external
libraries. We are not aware of any privacy or ethical concerns
arising from benchmarking or testing our code.

A.2.2 How to access

The source code and raw benchmark data can be found
in https://github.com/KULeuven-COSIC/maestro,
or archived in https://doi.org/10.5281/zenodo.
14719154. The README file in the root directory provides
instructions on how to use the artifact and how to parse the
raw benchmark data.

A.2.3 Hardware dependencies

Evaluation of this artifact does not require special hardware.
Benchmarking requires three servers/computers with x86
or AArch64 architecture offering CLMUL support (see Sec-
tion A.3.2 on how to test for this). The throughput and latency
of the network connecting the servers are specific to the dif-
ferent benchmarks. The settings range from “WAN network”
(50 Mbits/s and 100 ms round-trip time) to “LAN network”
(10 Gbit/s and almost no latency). More details are found in
the README file.

The benchmark results in the paper were created on three
separate servers with 16 CPU cores and 128GB RAM. To
validate our claims, in particular (C1) for functionality, it is
not necessary to have access to similar hardware. To validate
(C2) or (C3), three machines with 4 to 8 cores, and 8GB to
16GB RAM should suffice to run the protocols with smaller
batch sizes.

https://github.com/KULeuven-COSIC/maestro
https://doi.org/10.5281/zenodo.14719154
https://doi.org/10.5281/zenodo.14719154


A.2.4 Software dependencies

Our software was developed on Linux and MacOS using
the Rust programming language. All dependencies are freely
available online and are described in the README file.

A.2.5 Benchmarks

The raw data from the experiments reported in the paper
can be found in the benchmark-data folder. We consider
throughput and latency benchmarks. The details of the data
format are described in the README file mention above.

Throughput Benchmarks

• benchmark-data/10Gbit contains data of all protocols
in the 10 Gbit/s network with batch sizes 50000, 100000
and 250000.

• benchmark-data/1Gbit contains data of all protocols
in the 1 Gbit/s network with batch sizes 50000, 100000
and 250000.

• benchmark-data/200Mbps-15msRTT contains data of
all protocols in the 200 Mbit/s with 15 ms round trip time
network with batch sizes 50000, 100000 and 150000.

• benchmark-data/100Mbps-30msRTT contains data of
all protocols in the 100 Mbit/s with 30 ms round trip time
network with batch sizes 10000, 50000 and 100000.

• benchmark-data/50Mbps-100msrtt contains data of
all protocols in the WAN network (50 Mbit/s with 100
ms round trip time) with batch sizes 10000, 50000 and
100000.

Latency Benchmarks

• benchmark-data/10Gbit-latency contains data for
1 AES block in the 10 Gbit/s network,

• benchmark-data/1Gbit-latency contains data for 1
AES block in the 1 Gbit/s network,

• benchmark-data/200Mbps-15msRTT-latency con-
tains data for 1 AES block in the 200 Mbit/s with 15 ms
round trip time,

• benchmark-data/100Mbps-30msRTT-latency con-
tains data for 1 AES block in the 100 Mbit/s with 30 ms
round trip time,

• benchmark-data/50Mbps-100msrtt-latency
contains data for 1 AES block in the WAN network.

A.3 Set-up
All information on installation, tests, and evaluation workflow
are also found in the README file in the root directory of the
artifact.

A.3.1 Installation

1. Download the artifact from the repository provided
above.

2. Install a recent version of OpenSSL.

3. Install Rust, version 1.75 or newer.

4. Install a recent version of Python 3 and the numpy,
pandas packages (to parse benchmark results).

A.3.2 Basic Tests

1. Use RUSTFLAGS=’-C target-cpu=native’ cargo
test --lib to run basic unit tests.

2. Use RUSTFLAGS=’-C target-cpu=native’ cargo
bench "CLMUL Multiplication" to check that
your machine offers hardware support for carry-less
multiplication. If the test succeeds your machine has
CLMUL support.

A.4 Evaluation workflow
To prepare for benchmarking proceed as follows:

1. Compile the benchmark binary using RUSTFLAGS=’-C
target-cpu=native’ cargo build -release
--bin maestro --features="clmul" (this assumes
that the machine compiling and the benchmark servers
are using the same architecture).

2. On each benchmark server setup the necessary TLS cer-
tificates.

3. If necessary, modify the network conditions.

(a) Run ip addr show (or a similar command) to ob-
tain the name of the network interface of each
benchmark server, e.g., eth0, enp0s3, etc.

(b) In case a previous experiment modified the
network, remove the limitation before adding
a new one: tc qdisc del dev <iface name>
root netem

(c) Set bandwidth and round trip time (RTT) as tc
qdisc add dev <iface name> root netem
rate <bandwidth> delay <0.5 * RTT>, for
example tc qdisc add dev eth0 root netem
rate 200mbit delay 7.5ms to limit the net-
work traffic over eth0 to 200Mbit/s with a round
trip time of 15ms.



4. Start the benchmark via CLI on all three server.

More details are given in the README file mentioned above.

A.4.1 Major Claims

(C1): The artifact is functional. The provided source code
compiles successfully and the unit tests run without er-
rors. Using three terminals, one can run any of the im-
plemented protocols on the same machine where commu-
nication is over localhost. This is proven by experiment
(E1)

(C2): The throughput benchmarks are reproducible. That is
one can replicate the relative throughput of the differ-
ent protocols, i.e., claims of the form “Protocol X has
twice the throughput than Protocol y”. This is proven by
experiment (E2).

(C3): The latency benchmarks are reproducible. That is one
can replicate the relative latency of the different proto-
cols. This is also proven by experiment (E2).

A.4.2 Experiments

(E1): [Run a small-scale benchmark: 20 human minutes +
10 compute minutes] Experiment E1 builds upon the
successful compilation of the source code and execution
of unit tests (from Section A.3.2).
Set B to be the batch size, say 1000. Set R to be the
number of repetitions, say 2.

1. Follow the description Running benchmarks > On
localhost in the README file.

2. Open three terminals on the evaluation machine.
Then run the benchmark binary with SIMD B
and rep R, like this target/release/maestro
--config p1.toml --threads 4 --simd B
--rep R --csv result-p1.csv chida lut16
gf4-circuit lut256 lut256-ss mal-chida
mal-chida-rec-check mal-lut16-ohv
mal-gf4-circuit-opt mal-lut256-ss-opt
(repeat for the second and third terminal
with p2.toml and p3.tomls, and with
result-p2.csv and result-p3.csv, re-
spectively.

3. There should be information printed in all terminals
about which protocol is currently benchmarked,
etc.

4. When all finished successfully, it should say
Writing CSV-formatted benchmark results
to result-p1.csv.

5. Parse the benchmark data using
python parse-csv.py result-p1.csv
result-p2.csv result-p3.csv.

If all these steps ran without error and the parsing script
shows throughput for the different protocols, this experi-
ment is successful.

(E2): [Run the Benchmarks] [2 human hours + 5 compute
hour]: Experiment E2 is to run the benchmarking soft-
ware given the different network conditions mention in
Section A.2.5.
Computing on larger batch sizes takes more time, in
particular in networks with latency. Thus for (E2) we
propose reduced parameter numbers and repetitions for
each scenario.

• (Throughput) 10Gbit network: B = 100000 with
R = 5.

• (Latency) 10Gbit network: B = 1 with R = 10.

• (Throughput) 1Gbit network: B = 50000 with R =
5.

• (Latency) 1Gbit network: B = 1 with R = 10.

• (Throughput) 200Mbit network: B = 10000 with
R = 5.

• (Latency) 200Mbit network: B = 1 with R = 10.

• (Throughput) 100Mbit network: B = 10000 with
R = 5.

• (Latency) 100Mbit network: B = 1 with R = 10.

• (Throughput) 50Mbit network: B = 10000 with
R = 5.

• (Latency) 50Mbit network: B = 1 with R = 10.

Preparation: Setup the network and servers and pre-
pare the benchmark software using the steps outlined in
Section A.3.
Execution:

1. Setup the latency and throughput of the network.
2. Run the benchmark software on all three machines.
3. Repeat for each of the claimed network settings.

Results:
1. Parse the benchmark results using the given python

script.
2. Compare the outcome with the original data in the

benchmark-data folder. The relative differences
in throughput and latency of the different protocols
should roughly match.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Tests

	Evaluation workflow
	Major Claims
	Experiments

	Version


