
USENIX Security ’25 Artifact Appendix: From Alarms to Real Bugs:
Multi-target Multi-step Directed Greybox Fuzzing for Static Analysis

Result Verification

A Artifact Appendix

A.1 Abstract
Our artifact, Lyso, is a multi-target, multi-step directed grey-
box fuzzing (DGF) designed to verify static analysis results
by leveraging semantic program flow information and alarm
correlations. Lyso introduces novel seed selection, power
scheduling, and step-tracking mechanisms to efficiently ex-
plore and confirm vulnerabilities flagged by static analysis
tools. In our evaluation, Lyso achieved a 12.17× speedup over
state-of-the-art fuzzers while confirming the highest number
of true bugs and discovering eighteen new vulnerabilities.

This artifact includes:

• Source Code: Contains the implementation of Lyso,
which is built on AFL v2.57b and uses LLVM 11.0.0.

• Sequences of steps: Sequences of steps derived from
CodeQL, which guide the fuzzing process.

• Evaluation Scripts: Scripts to reproduce the experimen-
tal results on the Magma benchmark.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

• Execution Risks: Lyso executes real-world applications
with dynamically generated inputs. It is advised to run
the artifact in an isolated virtual machine (VM) or a con-
trolled testing environment to prevent potential security
issues.

• Crash-Induced Data Corruption: As Lyso is designed
to trigger crashes and anomalous behaviors, there is
a risk of file corruption or unintended system behavior.
Evaluators should ensure that no critical system files or
sensitive data are accessible during execution.

• Data Handling: Lyso does not interact with personal or
confidential data. However, test cases generated during
fuzzing should be managed carefully to avoid exposing
any unintended sensitive information.

• Vulnerability Disclosure: If evaluators identify new vul-
nerabilities using Lyso, they should follow responsible
disclosure practices when reporting bugs to software
maintainers.

A.2.2 How to access

Our artifact, Lyso, is publicly available and archived
to ensure long-term accessibility. The artifact can
be accessed at the following stable Zenodo reference:
https://zenodo.org/records/14714504. Additionally, we will
maintain a GitHub repository to facilitate continued develop-
ment.

A.2.3 Hardware dependencies

Lyso does not require any specialized hardware. It runs on
general-purpose x86-64 architectures and has been evaluated
on systems with Intel processors. There are no strict hard-
ware dependencies such as GPUs, FPGAs, or specialized
interconnects.

A.2.4 Software dependencies

Since all required software (e.g., compilers, fuzzing frame-
works, Python packages) is handled through Lyso’s Magma
setup scripts inside the Docker container, evaluators do not
need to install any additional dependencies manually and
only need to ensure that they can run Magma on their system.
To successfully launch Magma, we recommend running it on
Ubuntu 22.04. Other Linux distributions may work, but they
are not officially tested.

A.2.5 Benchmarks

Lyso requires the Magma benchmark as the primary dataset
for evaluating its fuzzing effectiveness. The Magma bench-
mark provides a diverse set of real-world programs containing
known bugs, which serve as targets for Lyso’s experiments.
Buggy programs from Magma are included in the provided
Docker environment and do not need to be manually down-
loaded or configured by the evaluator.

https://zenodo.org/records/14714504

A.3 Set-up

A.3.1 Installation

The installation of Lyso and its dependencies is fully auto-
mated using the Magma benchmark’s Docker-based setup.
Follow these steps to install and set up the artifact.

Step 1: Install Required Dependencies Before using
Magma and its scripts, install the necessary system dependen-
cies:

apt-get update && apt-get install -y \
util-linux inotify-tools docker.io git

Step 2: Clone the Magma Repository Download the
Magma benchmark by cloning its repository:

git clone https://github.com/HexHive/magma.git

Step 3: Move Lyso into Magma To integrate Lyso with
Magma, move the Lyso folder into the Magma fuzzers direc-
tory:

mv /path/to/lyso magma/fuzzers/

This ensures that Lyso is correctly placed within the Magma
environment.

A.3.2 Basic Test

To verify that Lyso is correctly installed and functional, per-
form the following steps. This test ensures that all required
software components are in place and that Lyso can interact
with the Magma benchmark.

Step 1: Using Captain Scripts for Fuzzing Cam-
paigns Magma provides the Captain scripts (located in
magma/tools/captain) to build, start, and manage
fuzzing campaigns. The script magma/captain/run.sh
automates the process by:

• Building the required fuzzing images.

• Configuring parallel campaign execution.

• Managing fuzzing runs based on a configuration file
(captainrc).

Step 2: Configuring a Fuzzing Campaign To run a
24-hour Lyso fuzzing campaign on a Magma target (e.g.,
libpng) one time and store the result in the workdir direc-
tory, update the captainrc file with the following settings:

WORKDIR: Directory for shared volumes
WORKDIR=./workdir

REPEAT: Number of campaigns per program
REPEAT=1

TIMEOUT: Campaign duration
(supports s/m/h/d suffixes)
TIMEOUT=24h

FUZZERS: List of fuzzers to evaluate
(from magma/fuzzers/*)
FUZZERS=(lyso)

Targets to fuzz with Lyso
(from magma/targets/*)
lyso_TARGETS=(libpng)

Step 3: Running the Campaign Once the captainrc
file is configured, execute the run.sh script in the same direc-
tory.

Step 4: Verifying the Output During execution, the build
and run logs of the campaign are stored in the workdir/log
directory. In addition, the fuzzer logs and outputs can be found
in workdir/ar/lyso/libpng/libpng_read_fuzzer/0/findings.

To collect TTE and TTR data generated by Magma, re-
fer to the monitor files located inside workdir/ar/lyso/libp-
ng/libpng_read_fuzzer/0/monitor. Each monitor file is named
using a timestamp (in seconds) representing the elapsed time
since the start of the campaign. These files contain a CSV
header and data rows that track the global campaign’s bug
reach and trigger counters at each timestamp.

If Lyso is functioning correctly, you should observe log
entries indicating successful campaign execution and active
fuzzer operations.

A.4 Evaluation workflow
A.4.1 Major Claims

The evaluation of Lyso aims to validate its effectiveness in
verifying static analysis alarms. The major claims made in
the paper are:

(C1): The evaluation demonstrates that Lyso achieves an
average 12.17× speedup over existing fuzzers in trigger-
ing bugs while also discovering the highest number of
vulnerabilities in the Magma benchmark.

A.4.2 Experiments

To validate Claim C1, we conducted experiments using
Lyso on the Magma benchmark, comparing its performance

against state-of-the-art fuzzers, including AFL, AFL++,
MOPT, AFLGo, Titan, FishFuzz, SelectFuzz, Parmesan. The
primary objective is to measure Time-to-Exposure (TTE),
Time-to-Reach (TTR), and Success Rate (SR) results.
(E1): Performance Evaluation of Lyso [24 compute-hour per

program]: This experiment evaluates Lyso’s effective-
ness in reducing Time-to-Exposure (TTE) and Time-to-
Reach (TTR) while improving Success Rate (SR). The
expected outcome is a significant decrease in TTE and
TTR compared to eight state-of-the-art fuzzers, along
with a higher SR in successfully triggering bugs.
Preparation:

• Set up the Magma benchmark following the A.3.1
instructions.

• Place Lyso in the magma/fuzzers directory.
• Ensure all baseline fuzzers are configured in the

magma/fuzzers directory.
• Configure the captainrc file (located in mag-

ma/tools/captain) to define fuzzing parameters:
FUZZERS=(lyso) TARGETS=(libpng libtiff libxml2
libsndfile lua poppler sqlite3 php openssl). This en-
sures that Lyso is executed on all buggy programs
listed in Table 2.

Execution: Start the fuzzing campaigns for Lyso by
executing the run.sh script located in magma/tools/cap-
tain. This will initiate the fuzzing process and generate a
workdir directory, which will store all results, including
TTE, TTR, SR, logs, and fuzzing statistics.
Results: To collect TTE, TTR and SR results, execute the
following command: tools/benchd/exp2json.py workdir
bugs.json

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

