ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: HawkEye: Statically and
Accurately Profiling the Communication Cost of Models in Multi-party

Learning
Wengiang Ruan Xin Lin Ruisheng Zhou Guopeng Lin
Fudan University Fudan University Fudan University Fudan University
Shui Yu Weili Han”*

University of Technology Sydney

A Artifact Appendix

A.1 Abstract

We present HawkEye, a static model communication cost pro-
filing framework for multi-party learning (MPL), which is an
important technology for utilizing data from multiple parties
with privacy preservation. Our artifact includes:

1. the accuracy evaluation of HawkEye.

2. three practical applications of HawkEye.

This artifact reproduces the tables and figures in our paper.

A.2 Description & Requirements

HawkEye enables model designers to get the accurate com-
munication cost of PyTorch-based models in multi-party
learning (MPL) frameworks without dynamically running
the secure model training or inference processes on a spe-
cific MPL framework. For example, model designers can
apply HawkEye to statically analyze the communication cost
of different components of a CNN model constructed with
PyTorch on an MPL framework (e.g., ABY3) without running
the secure model training or inference process on the MPL
framework. Therefore, with HawkEye, model designers can
find the performance bottleneck of models efficiently and then
design efficient models for different MPL frameworks.

HawkEye currently supports static model communica-
tion cost profiling on ten MPL frameworks, including
CrypTFlow2, CrypTen, ABY, SPDZ-2k, ABY3, and Falcon,
Delphi, Cheetah, Deep-MPC, SecretFLow-SEMI2K. Model
designers can apply HawkEye to statically analyze the com-
munication costs of PyTorch-based models on these ten MPL
frameworks.

HawkEye is developed based on the compiler of MP-SPDZ
that is implemented by Python. The codebase also includes
the virtual machine of MP-SPDZ to reproduce experimental
results in the paper.

*Corresponding author: wlhan @fudan.edu.cn

Fudan University

A.2.1 Security, privacy, and ethical concerns

The execution of our artifact would not cause security, privacy,
or ethical risks to the machines of evaluators.

A.2.2 How to access

HawkEye can be accessed through two ways: (1) Zenodo.
The URL is https://zenodo.org/records/14855032.
(2) Github. The URL is https://github.com/wgruan/
HawkEye. The above two repositories both include instruc-
tions for deploying HawkEye and reproducing our results.

A.2.3 Hardware dependencies

HawkEye does not require any specialized hardware. Our ex-
periments were run on a Linux server equipped with two
32-core 2.30 GHz Intel Xeon CPUs and 512GB of RAM. The
OS version is Ubuntu 20.04.

A.2.4 Software dependencies

The evaluation of our artifact needs to be performed on a
Ubuntu Server that supports Python 3.8 and C++ 17. For the
installation of other third-party software, we describe them in
detail in the README documentation of the artifact.

A.2.,5 Benchmarks

None.

A.3 Set-up

In this section, we provide information about setting up and
running the artifacts.

A3.1 Installation

We provide instructions on how to install the dependencies
and necessary configuration steps in the README documen-


https://zenodo.org/records/14855032
https://github.com/wqruan/HawkEye
https://github.com/wqruan/HawkEye

tation of https://github.com/wqruan/HawkEye/tree/
main

A.3.2 Basic Test

After installation, you can run the command ‘python com-
pile.py -R 60 -Q CryptFlow2 -C -K LTZ,TruncPr auto-
grad_shufflenetv2 —profiling’ to check whether the installa-
tion is successful. The expected output is:

Conv2d
online comm size:38.87GB proportion:86.14%
online comm round:1745 proportion:67.37%
offline comm size:0.0GB proportion:0.00%
offline comm round:0.0 proportion:0.00%
Other linear
online comm size:4.15GB proportion:9.2%
online comm round:599 proportion:23.13%
offline comm size:0.0GB proportion:0.00%
offline comm round:0.0 proportion:0.00%
Linear
online comm size:43.02GB proportion:95.34%
online comm round:2344 proportion:90.5%
offline comm size:0.0GB proportion:0.00%
offline comm round:0.0 proportion:0.00%
Non_linear
online comm size:2.1GB proportion:4
online comm round:246 proportion:9
offline comm size:0.0GB proportion:0.0
offline comm round:0.0 proportion:0
profiling time: 0.09888839721679688
Program requires at most:
387620574936 online communication bits
0 offline communication bits
2590 online round
0 offline round
compiling time: 15.798906803131104

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): HawkEye can accurately profile the model communica-
tion cost on different MPL frameworks. This is proven
by experiments (E1). The result is described in Section
5.2, Appendix B, and Appendix C of the full version of
the paper and is illustrated in Tables 1, 2, 6, 7, 8, 9, and
Figures 6 and 7.

(C2): HawkEye can be used to find communication bottle-
necks of models on MPL frameworks with different
security models, choose a proper optimizer for secure
model training, and optimize the model computational
graph. These are proven by experiments (E2, E3, E4).
The result is described in Section 5.5 of the full version

of the paper and is illustrated in Tables 4, 5, and Figure
8.

A.4.2 Experiments

(E1) Accuracy of HawkEye (80 human-minutes + 4
compute-hour + 64GB memory): This experiment eval-
uates the accuracy of HawkEye. We compare the com-
munication cost profiling results outputted by HawkEye
and five MPL frameworks (i.e. CrypTFlow2, CrypTen,
Delphi, Cheetah, SecretFLow-SEMI2K) to show the
accuracy of HawkEye.

Preparation: Build the environment as described
in the following link https://github.com/wgruan/
HawkEye#build-the-environment.

Execution: Use the scripts described in the follow-
ing link https://github.com/wqruan/HawkEye#
accuracy-of-hawkeye to run the experiments

and retrieve the results. Note that the source codes
of baselines are stored in other repositories. If
you want to run our baselines, you can follow
the instructions of REAMDE-HawkEye.md docu-
mentation in their repositories (https://github.
com/wqruan/MPCFormer—-HawkEye and https:
//github.com/yNotAVAILABLEa/Delphi-HawkEye/

tree/main). The README documentation of
https://github.com/wgruan/HawkEye/tree/main

provides more details.

Results: The experimental results would be stored in
text files. The README documentation of https://
github.com/wgruan/HawkEye/tree/main provides
more details. This experiment supports claim (C1).

(E2) Impact of security models (10 human-minutes + 1
compute-hour + 32GB memory): This experiment shows
that HawkEye can help model designers find communi-
cation bottlenecks of models on MPL frameworks with
different security models. We apply HawkEye to profile
model communication cost on four MPL frameworks
whose security models are different.

Preparation: Build the environment as described
in the following link https://github.com/wgruan/
HawkEye#build-the-environment.

Execution: Use the scripts described in the fol-
lowing link https://github.com/wqruan/HawkEye#
impact-of-security-models to run the experiments
and retrieve the results.

Results: The experimental results will be shown in a
figure corresponding to Figure 8 of the full version of
the paper. This experiment supports claim (C2).

(E3) Choice of optimizers (10 human-minutes + 1 compute-
hour + 32GB memory): This experiment shows that
HawkEye can help model designers choose a proper opti-
mizer for secure model training. We apply HawkEye to
profile the communication cost of secure model training


https://github.com/wqruan/HawkEye/tree/main
https://github.com/wqruan/HawkEye/tree/main
https://github.com/wqruan/HawkEye#build-the-environment
https://github.com/wqruan/HawkEye#build-the-environment
https://github.com/wqruan/HawkEye#accuracy-of-hawkeye
https://github.com/wqruan/HawkEye#accuracy-of-hawkeye
https://github.com/wqruan/MPCFormer-HawkEye
https://github.com/wqruan/MPCFormer-HawkEye
https://github.com/yNotAVAILABLEa/Delphi-HawkEye/tree/main
https://github.com/yNotAVAILABLEa/Delphi-HawkEye/tree/main
https://github.com/yNotAVAILABLEa/Delphi-HawkEye/tree/main
https://github.com/wqruan/HawkEye/tree/main
https://github.com/wqruan/HawkEye/tree/main
https://github.com/wqruan/HawkEye/tree/main
https://github.com/wqruan/HawkEye#build-the-environment
https://github.com/wqruan/HawkEye#build-the-environment
https://github.com/wqruan/HawkEye#impact-of-security-models
https://github.com/wqruan/HawkEye#impact-of-security-models

processes with two different optimizers.
Preparation: Build the environment as described
in the following link https://github.com/wqruan/
HawkEye#build-the-environment.
Execution: Use the scripts described in the fol-
lowing link https://github.com/wgruan/HawkEye#
choice-of-optimizers to run the experiments and re-
trieve the results.
Results: The experimental results would be stored in
text files. The README documentation of https://
github.com/wqgruan/HawkEye/tree/main provides
more details. This experiment supports claim (C2).
(E4) Computational graph optimization (30 human-
minutes + 24 compute-hour + 32GB memory): This ex-
periment shows that HawkEye can improve the effective-
ness of classical computational graph optimization in se-
cure model inference. We combine HawkEye with TASO,
a classical computational graph optimization method for
deep learning models, to effectively reduce the commu-
nication overhead of secure model inference.
Preparation: Build the environment as de-
scribed in the following link https://github.
com/wqgruan/HawkEye?tab=readme-ov-file#
prepare-environment.
Execution: Use the scripts described in the fol-
lowing link https://github.com/wqruan/HawkEye?
tab=readme-ov-filef#run-experiments to run the
experiments and retrieve the results.
Results: We provide a Python script to parse
the experimental results. The README documen-
tation of https://github.com/wgruan/HawkEye/
tree/main provides more details. This experiment sup-
ports claim (C2).

A.5 Notes on Reusability

HawkEye can be easily reused to profile the communica-
tion costs of models on different MPL frameworks. Firstly,
HawkEye can be easily deployed and run. HawkEye is purely
implemented by Python and only depends on three Python li-
braries (i.e., numpy, matmplotlib, and setuptools) that can
be installed by popular package management tools (e.g.,
pip). Meanwhile, HawkEye can be run by one Python com-
mand and the scripts in the folder ‘HawkEye/Scripts’ in-
clude many examples. Secondly, model designers can eas-
ily construct models they want to profile based on HawkEye.
HawkEye provides an autograd library whose interfaces are
fully consistent with PyTorch. Meanwhile, the folder ‘Hawk-
Eye/Programs/Source’ includes many model construction ex-
amples. Finally, HawkEye has supported ten popular MPL
frameworks. In summary, model designers can easily reuse
HawkEye to profile the communication costs of models on
different MPL frameworks.

In addition, HawkEye can be extended to new MPL frame-

works by adding the communication cost configuration of the
MPL frameworks in the ‘HawkEye/Compiler/cost_config.py.’
Section 3.1 of the full version of the paper describes the com-
munication cost configuration process detailedly. Meanwhile,
‘HawkEye/Compiler/cost_config.py’ includes many examples
of MPL framework communication cost configurations.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://github.com/wqruan/HawkEye#build-the-environment
https://github.com/wqruan/HawkEye#build-the-environment
https://github.com/wqruan/HawkEye#choice-of-optimizers
https://github.com/wqruan/HawkEye#choice-of-optimizers
https://github.com/wqruan/HawkEye/tree/main
https://github.com/wqruan/HawkEye/tree/main
https://github.com/wqruan/HawkEye?tab=readme-ov-file#prepare-environment
https://github.com/wqruan/HawkEye?tab=readme-ov-file#prepare-environment
https://github.com/wqruan/HawkEye?tab=readme-ov-file#prepare-environment
https://github.com/wqruan/HawkEye?tab=readme-ov-file#run-experiments
https://github.com/wqruan/HawkEye?tab=readme-ov-file#run-experiments
https://github.com/wqruan/HawkEye/tree/main
https://github.com/wqruan/HawkEye/tree/main
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


