
USENIX Security ’25 Artifact Appendix: Web Execution Bundles:
Reproducible, Accurate, and Archivable Web Measurements

Florian Hantke
CISPA Helmholtz Center for Information Security

Peter Snyder
Brave Software

Hamed Haddadi
Imperial College London & Brave Software

Ben Stock
CISPA Helmholtz Center for Information Security

A Artifact Appendix

Recently, reproducibility has become a cornerstone in the
security and privacy research community, including artifact
evaluations and even a new symposium topic. However, Web
measurements lack tools that can be reused across many mea-
surement tasks without modification, be robust to circumven-
tion, and remain accurate across the wide range of behaviors
in the Web. As a result, most measurement studies use custom
tools and varied archival formats, each of unknown correct-
ness and significant limitations, systematically affecting the
research’s accuracy and reproducibility.

To address these limitations, we present WebREC, a Web
measurement tool that is, compared against the current state-
of-the-art, accurate (i.e., correctly measures and attributes
events not possible with existing tools), general (i.e., reusable
without modification for a broad range of measurement tasks),
and comprehensive (i.e., handling events from all relevant
browser APIs). We also present .web, an archival format for
the accurate and reproducible measurement of a wide range of
past website behaviors. We empirically evaluate WebREC’s
accuracy, by replicating well-known Web measurement stud-
ies and showing that WebREC’s results more accurately match
our baseline. We then assess if WebREC and .web succeed
as general-purpose tools, which could be used to accomplish
many Web measurement tasks without modification. We find
that this is so: 70% of papers discussed in a 2024 web crawl-
ing SoK paper could be conducted using WebREC as is, and a
larger number (48%) could be leverage against .web archives
without requiring any new crawling.

A.1 Abstract

The goal of the artifacts evaluation is to see if you are able to
work with our tool of if there are any issues we can improve.
Therefore, we would like you to focus on testing and playing
around with our tool.

To make it clear, all the functionality of the tool we
are talking about in the paper (WebREC), is implemented

in pagegraph-crawl 1, a tool we continuously maintain.
We decided to do so to keep the anonymity during the
peer-reviewing process. A tool to analyze the archives is
pagegraph-query 2. As mentioned, we would like you to fo-
cus on these two and tell us if there is anything to improve
that would help you to get easier started with it.

Additionally, we provide the code used in this paper in
on Zenodo 3. This includes the pipeline to run pagegraph-
crawl together with the two proxies (mitmdump and war-
cprox) mentioned in the paper, scripts to replay responses
from the archives, and scripts for analysis.

A.2 Description & Requirements

This section list all the information necessary to recreate the
same experimental setup we used to test the artifact.

A.2.1 Security, privacy, and ethical concerns

Please make sure not to spam any website with the crawler.
Other than that, we see no security, privacy, and ethical con-
cerns.

A.2.2 How to access

You can access the code under the following repositories:

• pagegraph-crawl: https://github.com/brave/pag
egraph-crawl

• pagegraph-query: https://github.com/brave-exp
eriments/pagegraph-query

• Analysis pipeline: https://doi.org/10.5281/zeno
do.15091772

1https://github.com/brave/pagegraph-crawl
2https://github.com/brave-experiments/pagegraph-query
3https://doi.org/10.5281/zenodo.15091772

https://github.com/brave/pagegraph-crawl
https://github.com/brave/pagegraph-crawl
https://github.com/brave-experiments/pagegraph-query
https://github.com/brave-experiments/pagegraph-query
https://doi.org/10.5281/zenodo.15091772
https://doi.org/10.5281/zenodo.15091772
https://github.com/brave/pagegraph-crawl
https://github.com/brave-experiments/pagegraph-query
https://doi.org/10.5281/zenodo.15091772


A.2.3 Hardware dependencies

We developed our pipeline under MacOS and run it on a
Ubuntu 22.04.4 LTS server. We do not expect any specific
hardware needed for our tools.

A.2.4 Software dependencies

The code requires Python (tested with 3.10.12) and Node.js
(tested with 20.11.1) to be installed. If you run the code
on a server, a virtual X-server like xvfb might be needed.
The repositories include a requirements.txt for Python
dependencies, which can be installed using pip install -r
requirements.txt, and a package.json for Node.js de-
pendencies, installed via npm install.

Additionally, Brave Nightly, the testing and development
version of Brave needs to be install. Follow the instructions
at: https://brave.com/download-nightly/

A.2.5 Benchmarks

None

A.3 Set-up
This section contains all the installation and configuration
steps required to prepare the environment to be used for arti-
fact evaluation.

A.3.1 Installation

Below are the installation steps for all repositories. Each step
is independent and should start from your initial working
directory.

Pagegraph Crawl. To install the crawler, clone the reposi-
tory and build it with npm.

1 git clone

git@github.com:brave/pagegraph-crawl.git↪→

2 cd pagegraph-crawl

3 npm install

4 npm run build

Pagegraph Query. To use the query tool, clone the reposi-
tory and install the Python requirements.

1 git clone git@github.com:brave-experiments/

pagegraph-query.git↪→

2 cd pagegraph-query

3 python3 -m venv .venv

4 source .venv/bin/activate

5 pip install -r requirements.txt

If you use a Python version before 3.11, you will get
an error that StrEnum is missing. You can fix this by
installing StrEnum (pip install StrEnum) and adding
from strenum import StrEnum at the top of the types
file (pagegraph-query/pagegraph/types.py). Also, you
need to remove StrEnum as import from enum in line 4.

Experiment Pipeline. To setup the experiment pipeline de-
scribed in Section 4 to collect page graph, HAR, and WARC
files, and replays responses from HAR and WARC, follow
the steps below. Clone the repository, set up a virtual en-
vironment, and install dependencies. Due to version con-
flicts, in addition to the explained .venv you will need a
second .venv_warc installing requirements_warc.txt to
run replay_warc.py later. All requirements for the analysis
scripts can be installed with requirements_analysis.txt,
we recommend a .venv_analysis environment.

1 git clone https://github.com/cispa/WebREC.git

2 python3 -m venv .venv

3 source .venv/bin/activate

4 pip install -r requirements.txt

5 cd src

Now, you still need to create a config file config.py with
the following template:

1 TELEGRAM_API_KEY = 'secret'

2 TELEGRAM_CHAT_ID = 1

3 JS_HOOKING = True

4 SCRIPT_PATH = "./js_injections/js_hooks.js"

5 INITIALIZATION_BREAK = 60

6 BRAVE_EXEC_PATH = "/opt/brave.com/brave-

nightly/brave-browser-nightly"↪→

After creating the config, you are able to run the init com-
mand. It loads and installs the additionally needed tools such
as pagegraph-crawl.

1 python main.py --init --output ./output

https://brave.com/download-nightly/


If you want to test against sites that deploy a
CSP, you need to patch pagegraph crawl with await
page.setBypassCSP(true) as described in the readme of
our repository.

If you want to test running in multiple threads, we also
recommend to path pagegraph crawl with xvfb retires as de-
scribed in the readme of our repository.

Analysis via Jupyter Notebooks For the analysis files, we
use Jupyter Notebooks. There are various ways to execute
these files. One way would be to open it in VSCode which
automatically shows options to execute it. As an alternative,
you can use the Web base version as follows:

1. Install Jupyter Notebook (if not already installed):

pip install notebook

2. Navigate to the directory containing your notebook:

cd /path/to/your/notebook

3. Launch Jupyter Notebook:

jupyter notebook

4. Open the .ipynb file in your browser and run the cells.

A.3.2 Basic Test

This section provides instructions to perform simple function-
ality tests for the tools. Each test should run in the individual
repositories you previously cloned.

Pagegraph Crawl. To test if the crawler is built, you can
run npm run crawl -- -h to get a list of commands. As a
next test, you can run the first crawl as described below.

1 # Working directory ./pagegraph-crawl

2 npm run crawl -- -u "https://example.org" -t 5

-o output/ --har --har-body --screenshot↪→

3

4 ls output

5 page_graph_https___example_org__

1736505833.graphml

page_graph_https___example_org__

1736505833.png

↪→

↪→

↪→

6 page_graph_https___example_org__1736505833.har

Upon successful execution, the output directory will con-
tain:

• A pagegraph file (.graphml) representing the page be-
havior.

• A screenshot of the website (.png).

• A HAR file (.har) capturing all requests made within
the page’s context.

If the tool cannot detect your installed Brave
Nightly browser, specify its path manually
using: -b /Applications/Brave Browser
Nightly.app/Contents/MacOS/Brave Browser
Nightly

Pagegraph Query. To verify the installation, run python
run.py -h to list available commands. Then validate the
output of a previous crawl with the following command:

1 # Working directory ./pagegraph-query

2 python run.py validate

../pagegraph-crawl/output/page_[...].graphml↪→

3

4 {"meta": {"versions": {"tool": "0.9.5",

"graph": "0.7.1"}, "url":

"https://example.org/"}, "report":

{"success": true}}

↪→

↪→

↪→

5

Experiment Pipeline. To test and familiarize yourself with
the experiment pipeline, run python main.py --help to
view available options. To perform a test crawl, execute:

1 # Working directory ./webrec

2 cd src

3 python main.py --output ./output --workers 1

--origins https://example.org↪→

Upon successful execution, the output/ directory will
contain a timestamped folder with a subdirectory named
https_example.org holding all the generated files and
archives. If the execution fails, retries will be stored in di-
rectories such as https_example.org_failed_attempt_X.
Check output/<time>/<domain>/logs/ for detailed logs
to debug issues.

If you try to run the pipeline inside a docker, it might
be that you need to turn of the sandbox mode by pass-
ing the --no-sandbox option via the -extra-args in
src/misy.py:182.



A.4 Evaluation workflow

This section includes all the operational steps and experiments
which can be performed to evaluate the functionality of our
artifacts.

A.4.1 Major Claims

The major claims we make are the following:

(C1): Pagegraph-crawl can generate a graph representing
page behavior, a HAR file and a screenshot for any web-
page in its page context. Pagegraph-query can analyze
the behavior graph. To try this out, follow experiment
E1.

(C2): The pipeline described in Sec. 3 for the project gen-
erates page behavior graphs, HAR, and WARC files. It
also allows to replay from HAR and WARC generating
the datasets for the replay experiments. Experiment E2
verifies this.

(C3): The pipeline can be used to identify and measure
pages that use JavaScript-added inline event handlers
that would violate unsafe-inline. Experiment E3 demon-
strates this.

(C4): The pipeline can be used to compare the number of
HTTP requests between different archiving file formats.
Experiment E4 demonstrates this.

(C5): The pipeline can be used to compare the appearances
of JavaScript executions between different archiving file
formats. Experiment E5 demonstrates this.

A.4.2 Experiments

This section describes the experiments to prove the claims
from the previous section.
(E1): [Pagegraph Crawl and Query] [X human-minutes]: As

first experiment, we would like you to play around with
pagegraphl-crawl and pagegraphl-query and give
us feedback if you had any problems setting it up or
running it. Take as much time as you want.

(E2): [Experiment Pipeline] [30 human-minutes]: In this
experiment, please test if you get the experiment pipeline
running to collect pagegraph, HAR, and WARC files and
replay from HAR and WARC.
How to crawl: With the .venv environment,
run python main.py --output ./output
--workers 1 --origins https://example.org
https://google.com or use your list of origins.
How to replay HAR: With the .venv environment,
run python replay_har.py --initial-crawl
output/timestamp/ with timestamp being the one of
your previous crawl.
How to replay WARC: With the .venv_warc
environment, run python replay_warc.py

--initial-crawl output/timestamp/ with times-
tamp being the one of your previous crawl.
Results: Verify the output directory contains one times-
tamp directory with subdirectories for each visited do-
main. Each domain directory should include .graphml,
.har, and .warc files, along with replay directories for
HAR (mitmd_replay) and WARC (warc_replay).

(E3): [Event Handler Experiment] [15 human-minutes]: Run
a simple version of the Event Handler (Document Ob-
ject Model) experiment from the paper to validate the
pipeline’s detection of JavaScript-added inline event han-
dlers.
Preparation: Change the config.py as follows:

1 JS_HOOKING = True

2 SCRIPT_PATH =

"./js_injections/js_hook_smurf_new.js"↪→

Then, run the test page in examples/ on your local ma-
chine, for example with python3 -m http.server.
How to: Run the experiment pipeline for this page:
python main.py --output ./output --workers
1 --origins http://localtest.me:8000 and
generate the WARC and HAR replay directories as in
E2. Important: Do not use localhost, but a domain like
localtest.me that points to localhost. Otherwise, the
traffic bypasses the proxies.
For the analysis, change in the analysis/ directory
and the .venv_analysis environment. Then execute
event_handler.py. Change CRAWL_PATH in line 18 of
this file to point to your crawl. To see the results, open
and run csp_analysis.ipynb with the produced CSV.
Results: The result should show that PG, Smurf, HAR
Smurf, WARC Smurf and All Smurf_1 all have found
one origin with an JavaScript-added inline event handlers
that would violate unsafe-inline.

(E4): [Resources Experiment] [15 human-minutes]: Run a
simple version of the Requested Resources experiment
from paper to compare the number of resource requests
across archiving formats.
Preparation: Change the config.py as follows:

1 JS_HOOKING = True

2 SCRIPT_PATH = "./js_injections/js_hooks.js"

Then, run the test page in examples/ on your local ma-
chine, for example with python3 -m http.server.
How to: Run the experiment pipeline for this page:
python main.py --output ./output --workers
1 --origins http://localtest.me:8000. This
time, you do not need replays. Important: Do not use
localhost, but a domain like localtest.me that points to
localhost. Otherwise, the traffic bypasses the proxies.



For the analysis, change in the analysis/ di-
rectory and the .venv_analysis environment.
Then execute requests_analysis.py. Change
CRAWL_PATH in line 16 of this file to point to
your crawl. To see the results, open and run
requests_analysis.ipynb with the produced CSV
requests_results_timestamp_blocklist.csv.
Results: The result should show that PG and HAR have
the same number of requests. Additionally, you can see
that the page loaded the 3rd party tracker googletagman-
ager.com blocked by the easyprivacy list.

(E5): [JS Executions Experiment] [15 human-minutes]: Run
a simple version of the JavaScript experiment from paper
and compare JavaScript execution counts across different
archiving formats. In order for you to not compile your
own browser, we added a hook for window.setTimeout
that the test page uses.
Preparation: Change the config.py as follows:

1 JS_HOOKING = True

2 SCRIPT_PATH = "./js_injections/

js_hooks_js_experiment.js"↪→

Then, run the test page in examples/ on your local ma-
chine, for example with python3 -m http.server.
How to: Run the experiment pipeline for this page:
python main.py --output ./output --workers
1 --origins http://localtest.me:8000 and
generate the WARC and HAR replay directories as in
E2. Important: Do not use localhost, but a domain like
localtest.me that points to localhost. Otherwise, the
traffic bypasses the proxies.
For the analysis, change in the analysis/ directory
and the .venv_analysis environment. Then execute
js_compare.py. Change CRAWL_PATH in line 17 of this
file to point to your crawl. To see the results, open
and run js_analysis.ipynb with the produced CSV
js_results_timestamp.csv.
Results: The result should show that PG, HAR, and
WARC have the same number (1) of appearances: Equal
number of appearances: 1 / 1 (1.0).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


