
USENIX Security ’25 Artifact Appendix: HATEBENCH: Benchmarking
Hate Speech Detectors on LLM-Generated Content and Hate Campaigns

Xinyue Shen1 Yixin Wu1 Yiting Qu1 Michael Backes1 Savvas Zannettou2 Yang Zhang1

1CISPA Helmholtz Center for Information Security 2Delft University of Technology

A Artifact Appendix

A.1 Abstract
In this paper, we propose HateBench, a framework for bench-
marking hate speech detectors on LLM-generated hate speech.
We first construct a hate speech dataset of 7,838 samples gen-
erated by six widely-used LLMs covering 34 identity groups,
with meticulous annotations by human labelers. We then as-
sess the effectiveness of eight representative hate speech de-
tectors on the LLM-generated dataset. Our results show that
while detectors are generally effective in identifying LLM-
generated hate speech, their performance degrades with newer
versions of LLMs.

We also reveal the potential of LLM-driven hate campaigns,
a new threat that LLMs bring to the field of hate speech de-
tection. By leveraging advanced techniques like adversarial
attacks and model stealing attacks, the adversary can intention-
ally evade the detector and automate hate campaigns online.
The most potent adversarial attack achieves an attack success
rate of 0.966, and its attack efficiency can be further improved
by 13-21x through model stealing attacks with acceptable
attack performance.

A.2 Description & Requirements
This artifact includes code to generate the main result tables
in the paper, including:

• Table 3: Performance on LLM-generated samples.

• Table 4: F1-score on LLM-generated and human-written
samples.

• Table 6: Performance of adversarial hate campaign

• Table 8: Performance of model stealing attacks.

• Table 9: Performance of stealthy hate campaign with
black-box attacks.

• Table 10: Performance of stealthy hate campaign with
white-box gradient optimization.

Tables 3 and 4 can be executed directly on a local PC
without requiring a GPU environment. For other experiments,

we recommend using an environment with NVIDIA GeForce
RTX 3090 or more powerful GPUs, such as the RTX 4090 or
A100. The results presented in this paper were obtained using
an NVIDIA GeForce RTX 3090.

A.2.1 Security, privacy, and ethical concerns

Reproducing Table 3 and Table 4 does not pose any security
risks. However, to reproduce the results of the hate speech
campaign (Table 6, 8, 9, 10), it is likely to introduce secu-
rity and ethical concerns, as it involves attacking commercial
models such as the Perspective API and OpenAI Moderation
API. To mitigate these risks, we recommend that evaluators
reproduce the results on the open-source model TweetHate,
which is also the default target model provided in the follow-
ing steps. This ensures that evaluator results do not affect the
functionality of commercial models.

A.2.2 How to access

The artifact is available on Zenodo: https://zenodo.org/r
ecords/14840447. Given the ethical concerns surrounding
our code, which includes attacks against real-world systems,
we host these artifacts on Zenodo with the request-access
feature enabled.

A.2.3 Hardware dependencies

The artifact requires environments with GPUs. We recom-
mend using an environment with NVIDIA GeForce RTX
3090 or more powerful GPUs, such as the RTX 4090 or A100.
The results presented in this paper were obtained using an
NVIDIA GeForce RTX 3090.

A.2.4 Software dependencies

All our experiments are tested in a conda environment on
Ubuntu 20.04.6 LTS with Python 3.9.0. We provide detailed
instructions for evaluators to set up this conda environment
(see subsection A.3).

https://zenodo.org/records/14840447
https://zenodo.org/records/14840447


A.2.5 Benchmarks

Two datasets are used in the main experiments: 1) HateBench-
Set, the manually-annotated dataset generated by LLMs. 2)
MHS dataset1 as human-written samples.

A.3 Set-up

A.3.1 Installation

Download the artifact from Zenodo, decompress it, and enter
the main project directory. Then follow the below commands
to build the environment.

conda create -n hatebench python =3.9.0
conda activate hatebench
pip install -r requirements.txt

Enter the PYTHON environment to download the necessary
package.

import nltk
nltk.download(’averaged_perceptron_tagger_eng’)
exit()

A.3.2 Basic Test

python basic_test.py

Output should be

Transformers loaded successfully!
Detoxify works! output: {...}
TextAttack module initialized successfully!
OpenAttack loaded successfully!
Pandas & NumPy work!
Basic test completed!

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): We show that hate speech detectors perform inconsis-
tently on LLM-generated and human-written samples.
This is proven by the experiment (E1, E2) described in
Section 4, with the results shown in Tables 3 and 4.

(C2): Adversarial hate campaigns can bypass detectors. This
is proven by the experiment (E3) described in Section
5.4, whose results are reported in Table 6.

(C3): Model stealing can be used to enhance stealthy hate
campaigns. This is proven by the experiment (E4, E5)
described in Section 5.5, whose results are illustrated in
Tables 8, 9, and 10.

1https://huggingface.co/datasets/ucberkeley-dlab/measur
ing-hate-speech.

A.4.2 Experiments

(E1): Performance on LLM-generated samples [1
compute-minute]:
How to: Run the script to get the results.
Preparation: None
Execution: Run the following command in the terminal
from the project’s root directory.

python measurement/
calculate_detector_performance.py

Results: The results will be printed directly on the ter-
minal. It should be similar to Table 3.

(E2): F1-score on LLM-generated and human-written text.
[2 compute-minutes]:
How to: Run the script to calculate the performance of
hate speech detectors.
Preparation: None
Execution: Run the following command in the terminal
from the project’s root directory.

python measurement/
calculate_detector_LLM_performance.py

Results: The results will be printed directly on the ter-
minal. It should be similar to Table 4.

(E3): Adversarial hate campaign [30 compute-minutes]:
How to: Execute the attack scripts to reproduce the
results of TweetHate presented in Table 6. Results
will be automatically stored in the ./logs/ direc-
tory. The naming convention for the log files is
adv_hate_campaign_{target_model}_{attack}.log. For
example, to check the results of TextFooler attack
on TweetHate model, refer to the log file named
adv_hate_campaign_TweetHate_TextFooler.log and the
results are printed at the end of the log.
Preparation: None
Execution: Run the script.

cd hate_campaign
bash scripts/run_adversarial_hate_campaign.sh

Results: The results are expected to be comparable to
those for TweetHate in Table 6. Note that minor de-
viations may arise due to the inherent stochasticity of
machine learning algorithms and differences in GPU
performance.

(E4): Steal the target model [2 compute-hours]:
How to: Run the script and check the results.
Preparation: None
Execution: Run the script.

nohup python model_stealing.py --target_model
TweetHate --surrogate_model roberta > ./
logs/TweetHate_roberta.log &

nohup python model_stealing.py --target_model
TweetHate --surrogate_model bert > ./
logs/TweetHate_bert.log &

https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech


Results: The results are expected to be comparable to
those for TweetHate in Table 8.

(E5): Stealthy hate campaign (black-box + white-box)
[60 compute-minutes]:
How to: Execute the attack scripts to reproduce the re-
sults of TweetHate presented in Tables 9 and 10. Results
will be automatically stored in the ./logs/ directory.
Preparation: None
Execution: Run the script.

bash scripts/run_stealthy_hate_campaign.sh

Results: The results are expected to be comparable
to those for TweetHate in Tables 9 and 10. Attack
textfooler refers to the black-box attack (Table 9). Attack
textfooler_gradient is the white-box attack (Table 10).
The results are printed at the end of the log.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


