
USENIX Security ’25 Artifact Appendix: Gotta Detect ’Em All:
Fake Base Station and Multi-Step Attack Detection in Cellular

Networks

Kazi Samin Mubasshir*, Imtiaz Karim*, Elisa Bertino
Purdue University

A Artifact Appendix

A.1 Abstract
This artifact provides a machine learning–based toolkit
for detecting Fake Base Stations (FBS) and Multi-Step
Attacks (MSAs) in cellular networks from network traces
in the UE. It includes curated layer-3 cellular network
traces (NAS/RRC) along with scripts for preprocessing,
model training, evaluation, cross-validation, and perfor-
mance visualization. Users can easily experiment with
a variety of classification approaches—including Ran-
dom Forest, Support Vector Machines, XGBoost, CNN,
LSTM, and Graph Neural Network—by running the pro-
vided Python scripts. Metrics such as accuracy, preci-
sion, recall, and F1-score are automatically calculated,
and visual outputs are generated for further analysis.
Beyond classical ML models, the repository also con-
tains scripts for graph-based models (GCN, GAT, GATv2,
GraphSAGE, Graph Transformer) and a stateful LSTM
with attention. These scripts demonstrate how sequential
data (e.g., NAS/RRC messages) and structured data (e.g.,
graphs of packet traces) can be leveraged for attack detec-
tion. Additional scripts (e.g., cross-validation, trace-level
classification, and feature extraction) further streamline
the ML workflow. While the repository includes our im-
plementation of a signature-based detection approach for
comparison, the main focus is on training and evaluating
data-driven ML models to showcase their effectiveness in
detecting FBSes and MSAs from cellular network traffic.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact does not pose any security concern.

A.2.2 How to access

Datasets and codebase are publicly available
at https://zenodo.org/records/14720824 and

* Equal contribution. The student author’s name is given first.

https://github.com/fbsdetector/fbsdetector-codes.

A.2.3 Hardware dependencies

Minimum Requirements

• Processor: Modern multi-core CPU (e.g., 2–4
cores).

• Memory (RAM): 8 GB (sufficient for handling
moderate-sized datasets and basic training).

• Storage: At least 10 GB of free disk space (for the
repository, datasets, logs, and virtual environment).

• Graphics: Integrated GPU or CPU-only (sufficient
for small-scale or classical ML tasks).

Recommended Requirements

• Processor: 4+ cores (e.g., Intel i5/i7 or AMD equiv-
alent).

• Memory (RAM): 16 GB or more (for larger
datasets and parallelized model training).

• Storage: 20 GB or more of free disk space.

• GPU (Optional): For CNN, LSTM and Graph Neu-
ral Networks, an NVIDIA GPU with CUDA support
is recommended.

A.2.4 Software dependencies

Operating System

• Tested on Linux (e.g., Ubuntu 22.04 LTS).

• Compatible with Windows and macOS (minor ad-
justments may be needed).

• Requires a working Python 3.7+ environment.

Core Software Packages

• Python 3.7+: Check version with python3 -V.
We have tested this on Python 3.8.10, Python
3.10.16 and Python 3.11.5

https://zenodo.org/records/14720824
https://github.com/fbsdetector/fbsdetector-codes

• Pip: Use pip install -r requirements.txt
to install dependencies.

• Tshark 4.4.0: TShark is the command-line version
of Wireshark, a powerful network protocol analyzer.
Below are the installation instructions for different
operating systems.

Installation on Linux (Ubuntu/Debian) To install
TShark on a Linux system, run the following com-
mands:

sudo add-apt-repository ppa:wireshark-
dev/stable

sudo apt update
sudo apt install wireshark

Check installation

tshark --version

If version 4.4.0 is not installed, you can manually
download and install it:

wget https://www.wireshark.org/download/
src/all-versions/wireshark-4.4.0.tar.
xz

tar -xf wireshark-4.4.0.tar.xz
cd wireshark-4.4.0
./configure
make
sudo make install

Installation on macOS (Using Homebrew) To in-
stall TShark on macOS, use Homebrew:

brew install wireshark

Check installation

tshark --version

If an older version is installed, uninstall and install
the specific version:

brew uninstall wireshark
brew install wireshark@4.4.0

Installation on Windows To install TShark on Win-
dows:

1. Download Wireshark 4.4.0 from the of-
ficial website: https://www.wireshark.
org/download.html

2. Run the installer and ensure the "TShark"
component is selected.

3. After installation, verify the version by run-
ning:

tshark --version

• Virtual Environment (Optional): Recommended
(e.g., venv or conda).

Key Python Libraries

• NumPy, pandas, scikit-learn for data processing
and classical ML.

• PyTorch and TensorFlow.

• networkx for graph-based models.

GPU Support (Optional)

• An NVIDIA GPU with CUDA is recommended for
large graphs (long traces).

• Ensure compatible CUDA drivers for your Py-
Torch/TensorFlow version.

Additional Tools (Signature-Based Detection)

• Graphviz: For processing .dot files (sudo
apt-get install graphviz on Linux).

A.2.5 Benchmarks

Apart from the datasets provided, PHOENIX’s signatures
and packet traces are required to test our implementation
of PHOENIX for comparison.

A.3 Set-up
A.3.1 Installation

1. Download the Artifact

1. Navigate to the GitHub repository page in your
browser.

2. Click on the Code button and select Download ZIP,
or clone via:

git clone https://github.com/fbsdetector/
fbsdetector-codes.git

3. After downloading or cloning, change directory into
the repository folder:

cd fbsdetector-codes

2. (Optional) Create and Activate a Virtual Environ-
ment

1. Create a virtual environment (recommended to
avoid dependency conflicts):

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://phoenixlte.github.io/
https://github.com/fbsdetector/fbsdetector-codes.git

python3 -m venv venv

2. Activate the environment:

source venv/bin/activate

3. On Windows, activation is done via:

venv\Scripts\activate

3. Install Required Dependencies

pip install --upgrade pip
pip install -r requirements.txt

A.3.2 Basic Test

To verify that your setup is correct and the core function-
ality works, run:

python3 codes/trace-level-classification.py

This script performs a trace-level classification using
various ML models and should produce output indicating
model performance (e.g., accuracy, precision, recall).
Notes

• If you plan to use GPU-accelerated training, ensure
your system has the appropriate CUDA drivers in-
stalled for PyTorch or TensorFlow.

• For detailed usage of specific scripts, consult the
repository’s README or script-level docstrings.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): We create two real-world datasets, FBSAD and
MSAD, containing diverse traces of FBSes and
MSAs under different scenarios. These datasets
are large-scale and high-quality, being the first of
their kind to capture FBS/MSA behaviors from real-
world cellular network traffic. These datasets are
available in the dataset folder.

(C2): We design a two-step detection framework—a
packet-level classification followed by a trace-level
classification—that outperforms existing solutions
in accurately detecting FBSes. Using a novel state-
ful LSTM with attention in the packet-level stage
significantly improves detection performance (Ex-
periment (E1), Paper Section 6.1). Results in Tables
2 and 3 confirm this claim.

(C3): We introduce a graph-based learning approach
for detecting multi-step attacks (MSAs). By repre-
senting attack signatures as graphs, Graph Neural
Network (GNN) models effectively capture rela-
tional patterns even in unseen or reshaped MSAs.
This capability is demonstrated by Experiment
(E2), where our method outperforms standard ML
baselines and continues to detect evolving MSAs
through maximal overlapping subgraphs. Results in
Table 5, 16 and 17 confirm this claim.

(C4): We deploy the overall framework in a mobile app
and validate its performance in real-world setups.
The solution adds a little overhead in terms of mem-
ory and power consumption which is demonstrated
in Experiment E3. Results can be verified from Fig-
ure 4 (a-c) in the paper.

(C5): We implement a functional signature-based imple-
mentation of PHOENIX to compare our solution
with it. The functionality of the implementation can
be verified using Experiment E4. We use the NAS
and RRC packet fields as the features of our dataset
(reported in Table 15), which can be verified from
Experiment E5.

A.4.2 Experiments

Note: The compute time provided is based on running
with a GPU, running the experiments with a CPU will
take longer.
(E1): Packet-Level and Trace Level Classification [0

human-minutes + 2-3 compute-minutes + 5GB disk]
Link to Claims: This experiment demonstrates
claims made in (C2), showing the two-step frame-
work’s performance at the packet level and trace
level.
Preparation: • Confirm that PyTorch and

TensorFlow is installed and GPU drivers are
correctly configured if using GPU acceleration.

Execution: • Run:

python3 codes/classification-
models.py dataset/[fbs_nas/
msa_nas/fbs_rrc/msa_rrc].csv

python3 codes/stateful-lstm-w-
attn.py dataset/[fbs_nas/
fbs_rrc].csv

for the packet level classification and

python3 codes/trace-level-
classification.py

for trace level classification.
• Wait for the training to finish (time may vary

based on hardware, typically 1–2 minutes on a
mid-range config).

• The scripts output performance metrics (accu-
racy, precision, recall, F1-score) for the classi-
fication models.

Results: • Compare performance metrics (F1-
score, precision/recall) against Tables 2 and 3.

• We reported the best performance observed
across multiple runs with different epochs dur-
ing training to ensure we capture the most op-
timal performance of each model. So, results
may deviate slightly across runs from the ones
reported.

(E2): Graph-Based MSA Detection [0 human-hour + 3
compute-minutes + 5GB disk]
Link to Claims: This experiment supports (C3),
showcasing how graph-based learning models de-
tect multi-step attacks (MSAs), including those that
are previously unseen or reshaped.
Preparation: • Confirm that networkx and the

relevant GNN libraries (e.g., PyTorch Geomet-
ric and DGL) are installed.

Execution: • Run the graph-based detection
script

python3 codes/graph_models.py
dataset/[msa_nas/msa_rrc].csv

• The script will train the specified graph neural
network (GNN) models (Graph Convolutional
Network, GraphSAGE, GAT, etc.) and output
model performance metrics (accuracy, preci-
sion, recall, f1-score).

• Run the cross-validation script

python3 codes/cross-
validation.py dataset/[
msa_nas/msa_rrc].csv

• This script performs leave-one-class-out cross-
validation and generates the following outputs:
(1) Accuracy for each fold, (2) Detailed results
for each fold, including true and predicted la-
bels, (3) A pivot table summarizing the true
and predicted labels across all folds.

Results: • Examine the results and verify per-
formance for MSA detection in Table 5.

• Confirm the model’s robustness by cross vali-
dation (i.e., unseen attack traces) against Table
16 to verify Claim (C3).

(E3): Real-World Deployment and Comparison [0
human-hours + 1 compute-minute + 5GB disk]
Link to Claims: Validates (C4) by deploying the
FBSDetector framework in a mobile environment
and comparing its performance to signature-based
methods.
Execution: • Run

python3 codes/ml-stats.py

• This script generates the following plots: (1)
Accuracy vs Sequence Length for NAS and
RRC datasets (Figure 6 c-d), (2) Time Con-
sumption vs Number of Packets (Figure 4a),
(3) Power Consumption vs Number of Packets
(Figure 4b) and (4) Memory Consumption vs
Number of Packets (Figure 4c).

Results: • Compare the generated figures
against the figures in the paper.

(E4): Testing PHOENIX implementation for Signature-
Based Detection [3 human-minutes + 3 compute-
minutes + 2GB disk]
Link to Claims: This experiment demonstrates the
functionality of our signature-based implementation
(PHOENIX) as claimed in C5, validating its com-
patibility and accuracy on known attack traces.
Preparation: • Place the PHOENIX sig-

natures (e.g., .dot files for DFA or
Mealy machines, PLTL formulas) into
the dataset/signatures/ folder.

• Ensure sample .pcap traces with known
anomalies are accessible in dataset/ (or any
specified folder).

• Install graphviz (for processing .dot files)
and ensure that tcpdump or Wireshark is avail-
able if needed for additional .pcap inspections.

Execution: • Run the Deterministic Finite Au-
tomaton (DFA) test:

python3 phoenix-implementation/dfa.py
dataset/signatures/dfa/NAS/
attach_reject/attach_reject_50_40.
trace.dot dataset/NAS_PCAP_logs/
attach_reject.pcap

• Run the Mealy Machine (MM) test:

python3 phoenix-implementation/mm.py
dataset/NAS_PCAP_logs/attach_reject.
pcap

• Run the PLTL test:

python3 phoenix-implementation/pltl.py
dataset/NAS_PCAP_logs/attach_reject.
pcap

• Each script processes the given trace, applies
the signatures, and reports detections/anoma-
lies in the console output.

Results: • Confirm that PHOENIX flags known
anomalies (e.g., attach_reject) in the sam-
ple .pcap traces.

• Inspect the console logs for any parsing or
detection errors. Successful detection of the
known malicious patterns (e.g., attach re-
ject events) validates the correctness of the
PHOENIX implementation.

(E5): [Additional] Comparing Extracted Feature Names
[0 human-minutes + 1 compute-minute + negligible
disk]
Purpose: This experiment validates that the fea-
ture names used in our ML models (claimed in C5)
match the descriptions reported in Table 15 of our
paper.
Preparation: • Verify that the dataset files

(e.g., fbs_nas.csv, msa_nas.csv) exist in the
dataset/ folder.

Execution: • From the repository root, run:

python3 codes/feature-names.py

• The script writes the feature names to
outputs/column_names_output.txt file.

Results: • Compare each feature name to the
entries in Table 15 of the paper

A.5 Notes on Reusability
Adapting to different protocols or attack types

• If you wish to collect new traces and annotate them
with your target labels, our data loading and train-
ing pipelines can be reused with minimal changes,
provided your CSV structure matches the expected
format.

• To add new attacks, ensure that your labeling con-
vention is clear (does not use the current labels (1-
21)).

A.6 Version
Based on the LaTeX template for Artifact Evalua-
tion V20231005. Submission, reviewing and badging
methodology followed for the evaluation of this artifact
can be found at https://secartifacts.github.io/
usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

