
USENIX Security ’25 Artifact Appendix: System Register Hijacking:
Compromising Kernel Integrity By Turning System Registers Against the

System

Jennifer Miller∗, Manas Ghandat∗, Kyle Zeng∗, Hongkai Chen∗, Abdelouahab (Habs) Benchikh∗

Tiffany Bao∗, Ruoyu Wang∗, Adam Doupé∗, Yan Shoshitaishvili∗
∗Arizona State University

{jmill,mghandat,zengyhkyle,hongkai.chen,abenchik,tbao,fishw,doupe,yans}@asu.edu

A Artifact Appendix

A.1 Abstract
Our paper proposes System Register Hijacking (SRH) as a
class of exploitation techniques. As part of the paper, we
performed several experiments to determine the prevalence of
such gadgets and their applicability. To this end, our artifacts
include the following components:

• Scripts for measuring the occurrence of system instruc-
tions that may serve as SRH gadgets.

• Kernel module-based PoCs used to demonstrate individ-
ual techniques.

• Modified exploits included in our evaluation.

• The setup for reproducing the case study on bypassing
FineIBT.

• An implementation of an AVX timing side channel,
described in previous work but currently lacking an
open-source implementation: https://arxiv.org/
abs/2304.07940, usable for breaking KASLR on mod-
ern systems.

A.2 Description & Requirements
Our evaluation was primarily conducted on three systems: 1.
AMD Ryzen 7 PRO 6850U with 32GB RAM, 2. AMD Ryzen
Threadripper 7960X with 32GB RAM, 3. 11th Gen Intel Core
i7-1185G7 with 32GB RAM, all of which running Ubuntu
22.04. However, a single Intel x86-64 system with 32GB+ of
RAM should be sufficient for evaluation.

A.2.1 Security, privacy, and ethical concerns

Reviewers should take precautions when working with the ker-
nel exploits included as part of our evaluation. Running these
exploits outside of a virtualized environment on unpatched
Linux kernel versions may result in system instability.

A.2.2 How to access

Our artifacts can be accessed at the following location:
https://doi.org/10.5281/zenodo.14728440. The link
is associated with a compressed archive of the artifacts. De-
compressing and extracting that file will yield an artifacts
directory containing a README file that further describes
the organizational structure of the artifacts.

A.2.3 Hardware dependencies

Our artifacts expect evaluators to have a modern x86-64 sys-
tem. The PoCs expect to be ran using hardware-accelerated
virtualization features supported by the major x86-64 CPU
vendors. Our FineIBT evaluation requires access to a bare-
metal x86-64 system with an Intel CPU supporting the IBT
feature.

A.2.4 Software dependencies

Our artifacts require that evaluators have access to a Linux
system with Docker (https://www.docker.com/) installed.
We expect that evaluators to be able to install commonly used
software packages on their system, e.g., qemu-system, gcc,
and python3.

A.2.5 Benchmarks

None.

A.3 Set-up
Each component should provide either a script that handles
software dependencies for the evaluator, or rely only on soft-
ware packages that are widely used.

A.3.1 Installation

The only major dependency that will not be installed by
setup scripts for the experiments themselves is Docker.
Evaluators should follow the instructions provided on

https://arxiv.org/abs/2304.07940
https://arxiv.org/abs/2304.07940
https://doi.org/10.5281/zenodo.14728440
https://www.docker.com/

Docker’s website https://docs.docker.com/engine/
install/ubuntu/#install-using-the-repository to
set up Docker if they do not already have it installed.

A.3.2 Basic Test

As a basic test, evaluators should attempt to pull and run an
Ubuntu 22.04 Docker image. This can be done by running the
“docker pull ubuntu:22.04” and “docker run -it ubuntu:22.04
bash” commands. The result of these commands should be
that the evaluator has a Bash shell in an Ubuntu 22.04 con-
tainer.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Ability of “swapgs Stack Pivoting” to Bypass FineIBT.
This is proven by Experiment (E4), which relates to
Section 8.3 of the paper.

A.4.2 Experiments

(E1): [Gadget Analysis] [10 human-minutes + 8 compute-
hours + 3GB disk]: Downloads kernel packages from
Ubuntu and Fedora repositories, analyzes the kernel im-
ages for System Register Hijacking gadgets, and pro-
duces a csv file of resulting gadgets
How to: In the “analyzer” directory of the artifacts, ex-
ecute the “analyze.sh” script. It will run the entire analy-
sis.
Results: The README describes how to use the scripts
that were used to generate the tables found in the paper,
the tables in the paper should closely match the output
from this analysis.

(E2): [Kernel Module PoCs] [20 human-minutes + 1
compute-hour]:
How to: In the “eval-module” directory there is a sub-
directory for each architecture: “x86” and “arm”. Each
architecture has its own setup. The x86 directory con-
tains a “setup.sh” script that will install several apt and
python packages, fetch an Ubuntu kernel image, and
build a debian filesystem image. From there the “run-
50.sh” script can be used to semi-automate the evaluation
of individual technique reliability. For ARM, the “setup”
directory in the directory of each technique contains a
“startvm” script that will boot a vm containing the PoC,
which can be run by executing “./poc” in the VM’s shell.
Results: Results from running the experiment can be
compared with the results included in the paper in Table
2.

(E3): [CVE-Based PoCs] [10 human-minutes + 4 compute-
hours]:
How to: In the “eval-cve” directory there is a script
called “run-eval.sh” that will run the exploit for each

kCTF based CVE we modified 50 times and collect the
success rates. The script can be run with either “modified”
or “original” as an argument to evalutate the stability of
either our modified exploits or the exploits using the
control flow hijacking approach found in the original
exploits. The older CVE, which was pulled from the
RetSpill (https://github.com/sefcom/RetSpill)
dataset, can be found in the “eval-cve-retspill” directory.
This directory contains a script, “start.sh” that will spawn
a containerized environment to evaluate the exploit in.
Results: The results of this experiment can be compared
with the results found in Table 3 of the paper.

(E4): [FineIBT Evaluation] [2 human-hours + 1 compute-
hour]:
How to: In the “eval-fineibt/vuln-experiment” direc-
tory, there is an “iso” directory that should be turned into
an ISO file via the “grub-mkrescue” command found
in the README. The ISO should be loaded onto a
bootable drive and be booted into on a baremetal sys-
tem. Baremetal is necessary because IBT virtualization
is not currently available. Once booted into the ISO, the
evaluator will be placed into an initramfs containing our
modified exploit at “/exploit”.
Results: The exploit should sucessfully and reliably
print the flag and then attempt to shut down the system.

(E5): [Sidechannel] [10 human-minutes + 5 compute-
minutes]: ...
How to: In the “sidechannel” directory, run “start.sh”.
This will build and drop the evaluator into a container-
ized environment. In the container the “run.sh” script
can be used to boot a VM in which to test the side-
channel. Running “./kaslr” in the VM should result in
the KASLR base being printed, which can be compared
with the KASLR base that gets logged to the console on
boot.
Results: The side-channel should leak the base address
of the kernel.

A.5 Notes on Reusability
The header-files used for several of the CVE-based exploits
for the ’swapgs Stack Pivoting’ technique can be reused to
apply the technique to other exploits. The sidechannel imple-
mentation provided can be reused to demonstrate the ability
to break KASLR in future research.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository
https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository
https://github.com/sefcom/RetSpill
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

