ARTIFACT
EVALUATED

yusenix
sssssssss

ARTIFACT
EVALUATED
yusenix

AAAAAAAAAAA

AVAILABLE

USENIX Security *25 Artifact Appendix: Not so Refreshing: Attacking
GPUs using RFM Rowhammer Mitigation

Ravan Nazaraliyev® !, Yicheng Zhang!, Sankha Baran Dqttaz, Andres Marquez®, Kevin Barker®, Nael
Abu-Ghazaleh'!

YUniversity of California, Riverside
2Brookhaven National Laboratory
3 Pacific Northwest National Laboratory

A Artifact Appendix

This Artifact Appendix provides the necessary details to en-
able evaluations of our artifacts.

A.1 Abstract

Ou artifact is composed of one main part, code scripts for GPU
covert, side channel and slow-down attacks, and an additional
part for machine learning classification algorithms along with
pre-collected data.

A.2 Description & Requirements

We have provided code scripts to recreate covert channel and
slow-down attacks locally. We also provide the side channel
code that we used to collect data along with pre-collected data
and classification models for fingerprinting attacks.

A.2.1 Security, privacy, and ethical concerns

Our codes do not cause any issues regarding security, privacy,
and ethics. The provided artifact should be run locally on a
machine, and the codes show proof-of-concept attacks. The
codes, as expected, do not cause any harm to the machine nor
steal private information.

A.2.2 How to access

We have provided our artifacts in Zenodo repository.
The main part is located in notsorefreshing_artifact
repository. When you enter the repository, you will
see the folder notsorefreshing artifact folder
which is the main folder that contains code scripts.
The other folders contain ML classification models
for collected data. We provide a README file for

*rnaza005 @ucr.edu
Tnaelag@ucr.edu

main code scripts inside notsorefreshing artifact
folder. We provide an additional README file
(ReadMe_For_5_side_channel_attacks.md).

A.2.3 Hardware dependencies

Our code scripts require a custom CPU (our machine is Intel
Xeon E5-1620). The provided experiments require NVIDIA
GeForce RTX 4060 and Jetson Orin AGX LPDDRS. If you
do not intend to collect data on Jetson or do not have access
to one, you can use the already provided dataset.

A.2.4 Software dependencies

The evaluation machine should have NVIDIA Driver and
CUDA toolkit installed. We have provided the driver as part
of artifact. Please refer to CUDA toolkit download for CUDA
toolkit installation. To run Blender object fingerprinting, the
machine needs to have the Blender package, and you can
install Blender on Linux machine using snap install blender
—classic. Please refer to the README file for further informa-
tion.

A.2.5 Benchmarks

For all side channel experiments, we have provided necessary
benchmarks as part of the artifact. We only do not provide
Blender benchmark for slow-down attack as it is easy to get
it from Blender benchmark. To run this benchmark, you have
to have Blender package (refer to Sec A.2.4) and git clone
Phoronix Test Suite.

A.3 Set-up

We do not require a specific setup. The attack codes (CUDA)
need to be run with GUI mode off. You can disable GUI
using sudo service lightdm stop. If your machine does
not have 1ightdm, you can easily install it using sudo apt
install lightdm. Please refer to README for further details.


https://zenodo.org/records/14884501
https://developer.nvidia.com/cuda-downloads
https://openbenchmarking.org/test/pts/blender
https://github.com/phoronix-test-suite/phoronix-test-suite/

A.3.1 Installation

Please refer to Sections A.2.2 and A.2.4 for related informa-
tion. Please refer to README for further details.

A.3.2 Basic Test

The covert channel attack consists of Python scripts, as de-
scribed in the README file. The test outputs the achieved
bandwidth and error rate. For the slow-down attack, run the
Blender benchmark with and without the attack active. When
the attacker is active, the benchmark takes longer, and the
ratio of execution times gives the slow-down factor. The side-
channel scripts begin collecting data when executed. If pre-
collected data suffices for demonstrating functionality or re-
producibility, data collection is not required, as the necessary
traces are already included.

A.4 Evaluation workflow

We provide the necessary details for running the experi-
ments in the README files. Briefly, for the covert channel,
run RFM_Covertchannel_with_physidech.py to send a
random message, then run covertchannelevaluation.py
to measure the error rate. This covert channel works on
GeForce RTX 4060. Start MPS before running this attack
(nvidia-cuda-mps-control -d). This artifact corresponds
to Section 4.

Slowdown attack. Run ./slow_down to start the slow-
down code, then launch the benchmark. We used the Blender
benchmark; see Section A.4. Start MPS before this attack
(nvidia-cuda-mps-control -d). This artifact corresponds
to Section 7.

Side-channel codes:

GeForce RTX 4060 (with MPS). For Blender 3D object
fingerprinting, run sidechannelautomatic.py. It launches
the memory profiler, renders Blender objects, collects samples,
runs memorygram.py, and deletes CSV files to save space.
Requirements: 1) install Blender (Section A.2.4), 2) start MPS
(nvidia-cuda-mps-control -d). This artifact corresponds
to Section 5.

Jetson Orin AGX 64GB (without MPS). Go to
the AttacksOnJdetson folder. The three attacks are
in separate folders. For SPEC fingerprinting, run
./specfingerprint.sh. For Web and Video at-
tacks, run ./timeseriesdatacollection_web and
./timeseriesdatacollection_video, respectively. Data
is saved in CSV files. This artifact corresponds to Section 6.

A.4.1 Major Claims

Our artifacts provide reproducible and functional proof-of-
concept code implementations for the attacks presented in the

paper.

(C1): We demonstrate a covert channel across two GPU pro-
cesses based on RFM Rowhammer mitigation. The chan-
nel achieves high bandwidth with a low error rate. Re-
sults are shown in Table 1.

(C2): We demonstrate side-channel fingerprinting attacks on
GDDR and LPDDR systems. On GeForce RTX GPUs,
we achieve over 90% precision in identifying the vic-
tim application (Attackl) or Blender character (Attack2)
rendered on a shared GPU (Tables 2 and 3). On Jet-
son Orin AGX (LPDDR), we show that a spy process
can capture RFM fingerprints of a CPU process. We
demonstrate application, web, and video fingerprinting
attacks (Attack3-5), each achieving near or above 90%
accuracy (Table 4).

(C3): We show that an attacker can significantly slow down
another application by exploiting RFM-based Rowham-
mer mitigation, with an average slowdown of 4.8x.

A4.2 Experiments

We have already provided the necessary details on how to
run our code to reproduce results. Below, we provide explicit
instructions corresponding to claims in the previous section.
(E1): [Covert channel] [a couple of minutes of human time]:

How to: Start MPS using the
nvidia-cuda-mps-control -d com-
mand. In the main artifact folder, run

RFM_Covertchannel_with_physidech.py to ini-

tiate covert communication. After completion, it will

output status messages and the channel bandwidth.

Then, run covertchannelevaluation.py to obtain

the error rate.

Preparation: Disable GUI using sudo service

lightdm stop. If 1ightdm is not installed, install it via

sudo apt install lightdm.

Execution: Run the mentioned Python scripts to obtain

results.

Results: You should observe bandwidth and error rate

values matching or close to those reported in the paper.
(E2): [Side channel] [>1 day for full data collection]:

How to: We provide scripts for both data collection and

classification. Full data collection takes more than a day

per script (4 total). For convenience, we suggest running

ML classifiers on pre-collected data, which was gathered

using the same scripts.

Preparation: For data collection, disable GUI us-

ing sudo service lightdm stop. No preparation is

needed to run the ML classifiers.

Execution: Follow the README instructions to run

data collection and analysis scripts.

Results: Data collection alone does not yield results.

Run ML scripts to obtain F1 score, precision, and recall.
(E3): [Slow-down attack] [2-3 hours]:

How to: Run the Blender benchmark with and without



the attacker to observe slowdown.

Preparation: Disable GUI via sudo service
lightdm stop. If 1ightdm is not installed, use sudo
apt install lightdm.

Execution: The Blender benchmark is available at
OpenBenchmarking. To run it, install Blender (see Sec-
tion A.2.4) and clone Phoronix Test Suite. To launch
the attacker, go to the main artifact folder and run
./slow-down.

Results: You should observe increased benchmark run-
time when run concurrently with the attacker.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://openbenchmarking.org/test/pts/blender
https://github.com/phoronix-test-suite/phoronix-test-suite/
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


