
USENIX Security ’25 Artifact Appendix: "Nothing is Unreachable:
Automated Synthesis of Robust Code-Reuse Gadget Chains for Arbitrary

Exploitation Primitives"

Nicolas Bailluet
Univ Rennes, Inria, CNRS, IRISA

Emmanuel Fleury
Univ Bordeaux, CNRS, LaBRI

Isabelle Puaut
Univ Rennes, Inria, CNRS, IRISA

Erven Rohou
Univ Rennes, Inria, CNRS, IRISA

A Artifact Appendix

A.1 Abstract

The paper addresses the problem of automatically chaining
code-reuse gadgets to exploit vulnerabilities with arbitrary
exploitation primitives. While related works generally require
an attacker to control the stack (e.g. via a stack-overflow),
our approach adapts to arbitrary situations – involving the
stack, heap or anything else. Our experiments show that, un-
like related gadget chaining approaches, our proof-of-concept
tool – ARCANIST – supports various situations that involve
diverse exploitation primitives and layouts – where compet-
ing tools are simply not usable. Especially, we demonstrate
its applicability by generating gadget chains for 10 cases of
real-world vulnerabilities involving non-trivial layouts. Ad-
ditionally, we show that ARCANIST can generate long and
complex chains, leveraging intricate chaining techniques –
e.g. unassisted stack-pivoting, jump-oriented chaining and
conditional instructions.

A.2 Description & Requirements

The artifact is distributed as a set of archives. Among them, we
provide experiments.tar.gz, which is the only one needed
to reproduce the experiments. The rest of this document will
exclusively refer to experiments.tar.gz. Other archives
are provided for reference and transparency.

A.2.1 Security, privacy, and ethical concerns

No risk is taken when executing the artifact, no destructive
steps are taken, and no security mechanism is disabled dur-
ing execution. Moreover, experiments are containerized and
are meant to be executed in the provided container to avoid
polluting the evaluator’s system.

A.2.2 How to access

The artifact is made available on Zenodo under the following
DOI: 10.5281/zenodo.14724513.

A.2.3 Hardware dependencies

The tools run by the artifact may consume a lot of RAM and
run on a lot of cores. If you don’t have enough RAM, pro-
cesses might get killed by the OS. If you don’t have enough
cores, this might affect execution times and overall perfor-
mance. We recommend running the experiments on a system
with at least 96GB of RAM, and ideally 64 CPU cores or
more (the specifications of our experimental setup). As a
reference, our CPU cores were running at 2.3GHz.

A.2.4 Software dependencies

The artifact is meant to be run on a Linux operating system.
The experiments are containerized to facilitate their execu-
tion, isolation, and dependencies installation. You will need
Docker to run the containers and launch the experiments.

A.2.5 Benchmarks

The binaries used for our experiments are provided in the
archive in two folders:

• ./cve_binaries for the experiments of Section 8.1 to
8.3 on several CVEs.

• ./binaries for the experiments of Section 8.4 to 8.6.
Our tool ARCANIST uses a commercial (non-free) version of
Binary Ninja to lift gadgets. Therefore, to ensure reproducibil-
ity, and for other tools as well (when possible), we provide
the gadget libraries already extracted – for ARCANIST in ./
arcanist/gadgets, for SGC in ./sgc/target/*/.cache,
and for Angrop in ./angrop/gadgets.

https://doi.org/10.5281/zenodo.14724513


A.3 Set-up

A.3.1 Installation

1. Install Docker if not already done and ensure that you
can run docker compose.

2. Download and extract the experiments.tar.gz
archive from the Zenodo repository (see A.2.2).

3. Inside the extracted folder, run the following command
to import the containers:

$ ./import -containers.sh

A.3.2 Basic Test

Test environments are containerized and ready-to-use, just
check that you can access the containers by running:

$ docker compose run <TOOL >

with <TOOL> being angrop, ropium, sgc or arcanist.
In each container, a basic functionality test can be run with:

$ ./functionality_test.sh

In the end, it should print whether the basic functionality test
passed or failed.

A.4 Evaluation workflow

Note that, since ARCANIST launches multiple instances in
parallel, the generated chains may sometimes be different
from the ones given in the paper (an instance can succeed
before another, and randomness is involved in the underlying
solver).

A.4.1 Major Claims

(C1): ARCANIST can generate gadget chains for situations
where existing works are just unusable. This is proven
by the experiment (E1) detailed in Section 8.1 of the
paper, whose results are given in Table 1.

(C2): ARCANIST can generate long chains and lever-
age complex chaining techniques without explicit re-
quests – such as jump-oriented chaining, unassisted
stack-pivoting, use of conditional instructions and use
of additional buffers. This is proven by the experiments
(E2) and (E3), described in Sections 8.2 and 8.3 of the
paper, whose results are illustrated in Listing 2, 3 and 4.

(C3): Even in situations where existing works are usable,
ARCANIST proves to be more flexible and versatile by
being able to reach more attack goals and succeeding
more often than its competitors. This is proven by the
experiment (E4), detailed in Section 8.4 of the paper,
whose results are given in Table 2.

A.4.2 Experiments

Items (E1) to (E4) are the most important ones, dedicated
to our major claims. Regarding items (E5) to (E7), they are
dedicated to – less significant – time-consuming performance
evaluations.
(E1): [CVEs (Table 1)] [5 human-minutes + 2 compute-

hours]: In this experiment, we ask ARCANIST to gen-
erate gadget chains for real-world CVE situations where
other tools are unusable. We expect ARCANIST to suc-
ceed in generating chains in almost all situations – except
one, see Table 1 in the paper.
Execution: Firstly, enter the arcanist container:

$ docker compose run arcanist

Then, run the following command to start the experiment:

$ ./run_table1_experiments.sh

Results: Once done, you can print the results with:

python print_table1_results.py

This will display the results in the same order as in Table 1
in the paper.

(E2): [Complex Chains (Listing 2 & 3)] [5 human-minutes
+ 30 compute-minutes]: In this experiment, we show
the complexity of ARCANIST-generated chains through
two examples. We expect ARCANIST to generate non-
trivial chains showing: jump-oriented chaining, use of
conditional instructions and stack-pivoting. The gener-
ated chains should be similar to the paper’s chains, but
you might observe variations.
Execution: Firstly, enter the arcanist container, then,
run the following commands separately:

$ ./run_listing2_synthesis.sh
$ ./run_listing3_synthesis.sh

Results: For each command, the generated chain should
be printed in the end, once done.

(E3): [OPTEE Chain (Listing 4)] [5 human-minutes + 5
compute-minutes]: In this experiment, we show the ability
of ARCANIST to generate a stack-pivoting chains for
our OPTEE CVE case-study. The generated chain should
be similar to the paper’s chain, but you might observe
variations.
Execution: Firstly, enter the arcanist container, then,
run the following command:

$ ./run_listing4_synthesis.sh

Results: Once done, the generated chain should be
printed in the end.

(E4): [Tools Comparison] [10 human-minutes + 15 compute-
hours + 90GB-disk]: This experiment compares ARCAN-
IST with other tools in situations where its competitors
are usable. We expect ARCANIST to always succeed,
while other tools should fail in some situations.



Execution: In each tool’s container, run the following
command:

$ ./run_table2_experiments.sh

Results: The results for each tool can be printed by run-
ning the following command in the tool’s container:

$ python print_table2_results.py

This will print the results in the same layout as the tool’s
associated column from Table 2 in the paper.

(E5): [Memory Writes Benchmark] [10 human-minutes + 40
compute-hours]: This experiment evaluates the perfor-
mance of ARCANIST regarding the mem-write-ratio
parameter. We expect to observe a gap in average execu-
tion times between ratios of 0% and 5% (most important
observation). The average execution time is also expected
to increase as the ratio increases from 5% to 25% – the
paper shows a linear evolution, but depending on the ex-
perimental setup, the linear evolution might not be as
clean as Figure 7 in the paper.
Execution: Enter the arcanist container, then, run the
following command:

$ ./run_figure7_experiments.sh

Results: You can plot the figure by running:

$ ./plot_figure7.sh

This will generate a pdf at ./arcanist/synthesis_
results/memory_writes_benchmark/avg_time_
mem_writes.pdf, that you can open outside the
container.

(E6): [Sample Size vs Jobs Benchmark (libc)] [10 human-
minutes + 5 compute-days]: This experiment evaluates
the performance of ARCANIST regarding the jobs and
size parameters, for a stack-based scenario in libc. We
expect the best execution times to be achieved with sam-
ples of 100 gadgets (most important observation). We
also expect to see a color gradient similar to the one given
in Figure 8 in the paper.
Execution: Enter the arcanist container, then, run the
following command:

$ ./run_figure8_experiments.sh

Results: You can plot the figure by running:

$ ./plot_figure8.sh

This will generate three pdf in ./arcanist/
synthesis_results/lib_size_vs_process_
count_evaluation/libc.so.6/, named
average_time.pdf, success_ratio.pdf and
average_chain_length.pdf, which correspond
to the three heatmaps in Figure 8. You can open them
outside the container.

(E7): [Sample Size vs Jobs Benchmark (dnsmasq)] [10
human-minutes + 7 compute-days]: This experiment eval-
uates the performance of ARCANIST regarding the jobs
and size parameters, for a heap-based scenario in dns-
masq. We expect the best execution times to be achieved
with larger samples than (E6), and execution times should
be one order of magnitude higher than (E6) (most impor-
tant observation). We also expect to see a color gradient
similar to the one given in Figure 9 in the paper, espe-
cially there should be a lot of black squares (indicating
failures/timeouts).
Execution: Enter the arcanist container, then, run the
following command:

$ ./run_figure9_experiments.sh

Results: You can plot the figure by running:

$ ./plot_figure9.sh

This will generate three pdf in ./arcanist/
synthesis_results/lib_size_vs_process_count_
evaluation/dnsmasq/, named average_time.pdf,
success_ratio.pdf and average_chain_length.
pdf, which correspond to the heatmaps in Figure 9. You
can open them outside the container.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


