
USENIX Security ’25 Artifact Appendix: Practical Keyword Private
Information Retrieval from Key-to-Index Mappings

Meng Hao1, Weiran Liu2, Liqiang Peng2, Cong Zhang3 (B), Pengfei Wu1, Lei Zhang2, Hongwei Li4, and
Robert H. Deng1

1School of Computing & Information Systems, Singapore Management University
2Alibaba Group

3Institute for Advanced Study, BNRist, Tsinghua University
4Peng Cheng Laboratory

A Artifact Appendix

A.1 Abstract

In this artifact appendix, we introduce the minimal hardware
and software requirements for the artifact. Since the artifact
related to our paper is written in pure Java programming lan-
guage, the implementation is cross-platform and evaluators
can try the artifact on any platform(s) with JDK 17 (or later)
installed. We also introduce the source code structure and
the ways to run unit tests. We describe how to reproduce the
performance reports shown in our paper. Large-scale experi-
ments require relatively large RAM, but evaluators can still
try small-scale experiments even on laptops. We welcome
suggestions and performance reports on other platforms with
future reproducibility.

A.2 Description & Requirements

The artifact contain the implementations of our three con-
structions: KPIRkvs, KPIRhash, and KPIRindex, together with
the baseline construction ChalametPIR (CCS’24). Evaluators
can use the artifact to reproduce Table 1 to Table 6 shown in
our paper. We note that evaluators cannot reproduce column
“Memory” shown in Table 2. The reason is that the tool for
reporting the memory usage is jol1, whose license is not com-
patible with our license. If evaluators are familiar with Java,
it would be relatively easy to manually include related depen-
dencies, add required source codes, and obtain the memory
usage report based on the artifact.

A.2.1 Security, privacy, and ethical concerns

None.

BCorresponding author
1https://openjdk.org/projects/code-tools/jol/

A.2.2 How to access

The artifact of our paper has been open-sourced and merged
into mpc4j (version 1.1.3)2. The stable Zenodo URL for
this artifcate is available at https://zenodo.org/records/
14722434. Evaluators can either visit the stable Zenodo URL
or the stable version under tag v1.1.3 to reproduce the experi-
ment results shown in the paper.

Package “edu.alibaba.mpc4j.s2pc.pir.cppir.ks.simple” of
the submodule mpc4j-s2pc-pir contains the implementa-
tions of our three constructions: KPIRkvs (source codes
start with SimpleNaive), KPIRhash (source codes start with
SimpleBin), KPIRindex (source codes start with SimplePgm).
Package “edu.alibaba.mpc4j.s2pc.pir.cppir.ks.chamelet” of
the same submodule contains the implementation of
the baseline construction ChalametPIR (CCS’24). Evalu-
ators can also find unit tests for all client-preprocessing
keyword PIR protocols in the test folder of package
“edu.alibaba.mpc4j.s2pc.pir.cppir.ks”. Evaluators can find an
example configuration file in the resource folder, which is
used for running and reproducing performance reports.

A.2.3 Hardware dependencies

Since implementations related to our paper is written in pure
Java programming language, the artifact is expected to support
any platforms with JDK 17 (or later) installed. We have tested
functionalities of the artifact on 64-bit macOS, Ubuntu, and
CentOS systems.

We run our experiments on two machines, each
equipped with an Intel Core i9-9900K processor running at
3.6GHz and 128GB of memory. Evaluators may encounter
java.lang.OutOfMemoryError when running artifacts on small
RAM machines under large parameters.

2https://github.com/alibaba-edu/mpc4j/

https://openjdk.org/projects/code-tools/jol/
https://zenodo.org/records/14722434
https://zenodo.org/records/14722434
https://github.com/alibaba-edu/mpc4j/

A.2.4 Software dependencies

The only software dependency is JDK 17 (more later). We
note that unit tests also cover other keyword PIR protocol
functionalities in the artifact. Therefore, evaluators may en-
counter errors when running unit tests for protocols that are
not related to our paper. Nevertheless, evaluators can still
try other protocol implementations after following the guide-
lines described in the readme to install and configure required
native libraries.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

The artifact is implemented in a way that chooses the most
efficient protocol parameters. Unfortunately, this means that
reproducing some performance reports shown in our paper
requires modifying source codes. Therefore, we highly rec-
ommend loading the artifact using IntelliJ IDEA, the leading
Java IDE, so that one can later modify source codes more
easily. Evaluators can follow Section Development shown in
the readme to configure, compile, and run unit tests in IntelliJ
IDEA. Evaluators who are familiar with Java can alternatively
download and compile the artifact with the following steps.

1. Clone the repository: git clone https://github.com/alibaba-
edu/mpc4j.git.

2. Go to the root path: cd mpc4j.

3. Package the code to get the jar file: mvn package.

A.3.2 Basic Test

In package “edu.alibaba.mpc4j.s2pc.pir.cppir.ks”, evaluators
can find two unit tests, simple/SimpleCpKsPirParamsTest.java,
CpKsPirTest.java, in the test folder. Directly pressing the
green arrows showing on the left of these source codes can
run these unit tests.

Unit tests in simple/SimpleCpKsPirParamsTest.java are
used to reproduce columns “# Row” and “# Column” shown
in Table 3, Table 4, and Table 5, while the column “Exp. Rate”
can be manually computed based on the report. Since we
implement the matrix operations in the transposed form (due
to efficiency consideration), we reversely reported “# Row”
and “# Column” in our paper.

Unit tests in CpKsPirTest.java are used to test the function-
ality of the artifact. Directly run them in IntelliJ IDEA and
see if all tests for KPIRkvs (SIMPLE_NATIVE), KPIRhash

(SIMPLE_BIN), KPIRindex (PGM_INDEX) can pass.

A.4 Evaluation workflow
A.4.1 Major Claims

To reproduce the performance results shown in our paper,
evaluators need to generate the jar file (with the name mpc4j-
s2pc-pir-1.1.3-jar-with-dependencies.jar) by executing mvn
package, and run it with two progresses on a single machine,
or two progresses on two machines connected by the net-
work. Evaluators also need to create a config file with suitable
parameters. Below is a template configuration file.

s e r v e r i n f o r m a t i o n
se rve r_name = s e r v e r
s e r v e r _ i p = 1 9 2 . 1 6 8 . 1 . 1
s e r v e r _ p o r t = 9002

c l i e n t i n f o r m a t i o n
c l i e n t _ n a m e = c l i e n t
c l i e n t _ i p = 1 9 2 . 1 6 8 . 1 . 2
c l i e n t _ p o r t = 9003

append s t r i n g i n t h e o u t p u t f i l e
a p p e n d _ s t r i n g = example

p r o t o c o l t y p e
p t o _ t y p e = SINGLE_CP_KS_PIR

p r o t o c o l c o n f i g
e n t r y _ b i t _ l e n g t h = 256
s e r v e r _ l o g _ s e t _ s i z e = 22 ,22 ,20 ,18
query_num = 100
p a r a l l e l = f a l s e

p r o t o c o l name
s i n g l e _ c p _ k s _ p i r _ p t o _ n a m e = PGM_INDEX
or CHALAMET, SIMPLE_NAIVE , SIMPLE_BIN

(C1): Unit tests in simple/SimpleCpKsPirParamsTest.java
can reproduce Table 3, Table 4, and Table 5.

(C2): Running jars with suitable parameters can reproduce
Table 1.

(C3): Running jars with suitable source code modifications
can reproduce Table 2 and Table 6 (except column
“Memory”, see Section A.2).

A.4.2 Experiments

(E1): [10 human-minutes + 0.1 compute-hours]: Reproduce
Table 3, Table 4 and Table 5.
How to: See Section A.3.2.
Results: The numbers shown in the console should be
the same as ones listed in Table 3, Table 4, and Table 5.

(E2): [15 human-minutes + 3 compute-hour]: Reproduce
Table 1.
How to: Run two processes on two machines connected
via network cards, forming a realistic LAN network with
a bandwidth of 2.5Gbps and an RTT latency of 0.4ms.
Preparation: Setup two machines. Create a config file
shown in Section A.4.1 with correct server/client infor-
mation, required entry bit length, set sizes, query nums,
and protocol names. We assume the config file name is
YOUR_CONFIG_FILE_NAME.conf. Place the jar file and
the config file under the same path.
Execution: Open one terminal on each of the
machines, one for the server and one for the
client. Switch to the dictionary where mpc4j-
s2pc-pir-1.1.3-jar-with-dependencies.jar and
YOUR_CONFIG_FILE_NAME.conf are located. For
the server’s terminal, execute java -jar mpc4j-s2pc-pir-
1.1.3-jar-with-dependencies.jar config_file_name.conf
server. For the client’s terminal, execute java -
jar mpc4j-s2pc-pir-1.1.3-jar-with-dependencies.jar
YOUR_CONFIG_FILE_NAME.conf client. Wait until the
processes finish. The performance reports are located in
the folder “temp”.
Results: The performance reports should be similar
with ones listed in Table 1.

(E3): [30 human-minutes + 6 compute-hours]: Reproduce
Table 2 and Table 6.
How to: Same as E3.
Preparation: To reproduce Table 2, evaluators need
to manually assign the value of ε range to 4, 8, 16, 32
sequentially by changing line 30 of the code simple/Sim-
plePgmCpKsPirDesc.java with suitable ε range and
re-compile the jar file. To reproduce Table 6, evaluators
need to manually assign the dimension of LWE as
1408 by changing line 44 of the code simple/Simple-
NaiveCpKsPirConfig.java, simple/SimpleBinCpKsPir-
Config.java, and SimplePgmCpKsPirConfig.java from
this(GaussianLweParam.N_1024_SIGMA_6_4); to
this(GaussianLweParam.N_1408_SIGMA_6_4); and
re-compile the jar file. The remains are same as E3.
Execution: Same as E3.
Results: The performance reports should be similar
with ones listed in Table 2 and Table 6.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

