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A Artifact Appendix

A.1 Abstract

This is the artifact evaluation appendix for paper “Effective
Directed Fuzzing with Hierarchical Scheduling for Web Vul-
nerability Detection.” In this work, we propose a novel di-
rected fuzzing approach, called WDFUZz, that can effectively
vet the security of Java web applications. Our WDFuUzz ap-
proach is two-fold. First, we develop a semantic constraint
extraction technique to accurately capture the expected input
structures and constraints of web parameters. Second, we im-
plement a hierarchical scheduling strategy that evaluates the
potential of each seed to trigger vulnerabilities and prioritizes
the most promising seeds. In our evaluation against real-world
Java web applications, WDFUZz achieved a 92.6% recall rate
in the known vulnerability dataset, finding 3.2 times more
vulnerabilities and detecting them 7.1 times faster than the
state-of-the-art web fuzzer Witcher.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The evaluation process does not raise any ethical concerns.
Our benchmark dataset consists of older versions of web ap-
plications with known vulnerabilities. When deploying these
applications on the evaluator’s local machines, it is recom-
mended not to allow external access to these applications to
prevent attacks from external attackers.

A.2.2 How to access

The artifact can be downloaded from the Zenodo record'. Af-
ter downloaded, first concatenate all the splitted compressed
files with the following command:

cat WDFUZZ_part_* > WDFUZZ.tar.gz

Then unzip the file with this command:

tar xvf WDFUZZ.tar.gz

Thttps://zenodo.org/records/15128608

A.2.3 Hardware dependencies

At least 60 GB RAM and 200 GB free disk space are needed
to run the Artifact Evalution. We run our experiments on a
Ubuntu 18.04 server with 64-core Intel E7-4820 v2 2.00GHz
CPU, 173 GB RAM and 1 TB disk.

A.2.4 Software dependencies

A Unix-like system is required for Artifact Evaluation. We
recommend using Ubuntu 18.04. The other software depen-
dencies are listed below.

« Static Analysis. Java 17 is required to run the Tai-e static
analysis.

« Instrumentation. (1) Java 8° and (2) mvn* are needed to
compile the instrumentation program. (3) GCC” is needed
to compile the LD_PRELOAD binary.

 Dynamic Fuzzing. (1) Python3° and libraries (i.e., requests,
pyyaml, and selenium) is needed to run the fuzzer’s wrap-
per scripts. (2) Rust’ is needed to run the core LibAFL
fuzzer. (3) Docker® is needed to set up Web applications.
(4) Chrome and chrome-driver’ are needed to login web
applications automatically.
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A.2.5 Benchmarks

Our artifact contains 12 open-source web applications as
benchmark dataset. Please refer to Table 1 in the paper
for the detailed application list. The Docker images of
these web applications are located in the ./dataset di-
rectory within the artifact. To implement and setup these

Zhttps://www.oracle.com/java/technologies/javase/jdk17-0
-13-later-archive-downloads.html

3https://www.oracle.com/java/technologies/javase/javase
8u2ll-later-archive-downloads.html

4https://maven.apache.org/download.cgi

SUse sudo apt install build-essential to install.

%Use sudo apt install python3 python3-pip to install.

Thttps://forge.rust-lang.org/infra/other-installation-m
ethods.html

8nttps://docs.docker.com/engine/install/ubuntu/

9https://googlechromelabs.github.io/chrome-for-testing
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https://docs.docker.com/engine/install/ubuntu/
https://googlechromelabs.github.io/chrome-for-testing

applications for fuzzing, please refer to the document in
quick-reproduction-guide.pdf. Due to legal and licens-
ing reasons, we cannot provide the 3 closed-source commer-
cial web applications tested in the paper for Artifact Evalu-
ation. We believe that the experiment results from the open-
source applications are sufficient to prove the claims in the

paper.

A.3 Set-up
A.3.1 Installation

Python3, Rust, chrome and chrome-driver must be installed
to run WDFuzz.

Python3 and library installation. First, we recommend us-
ing this command on Ubuntu servers to install Python3 envi-
ronment:

sudo apt install python3 python3-pip

Then use this command to install necessary Python3 libraries:
pip install requests pyyaml selenium

Rust, chrome and chrome-driver installation. We recom-
mend installing Rust, chrome and chrome-driver according to
the instructions on their official websites, which are listed in
the footnote.

Web applications installation. Before start fuzzing, web ap-
plications under test should be installed. We recommend to
set up these web applications using the Docker images in
the artifact (within . /dataset directory) and following the
guidance in quick-reproduction-guide.pdf. The base-
line tool Witcher is also installed in the Docker images.

[Optional] Java, GCC, and mvn installation. Java, GCC,
and mvn are optional to install because we have pre-compiled
binaries for instrumentation and ready-to-use static analysis
results. To recompile these components, please refer to the
installation guide in WDFuzz-README. pdf.

A.3.2 Basic Test

Please run the following commands to check if necessary
environments have been installed. The output examples are
the outputs obtained in our test environment.

* Check Rust environment.

Command:

cargo --version

Output example:

cargo 1.79.0 (ffa9cf99%a 2024-06-03)

Command:

rustc --version

Output example:

rustc 1.79.0 (129£3b996 2024-06-10)
* Check Python3 environment.

Command:

python3 --version
Output example:
Python 3.6.9
¢ Check Docker environment.
Command:
docker --version
Output example:
Docker version 20.10.21, build
20.10.21-0ubuntul~18.04.3
¢ Check chrome-driver environment.
Command:
chromedriver --version
Output example:
ChromeDriver 132.0.6834.83 ...
¢ Check web applications under test.
You just need to use your browser to check if the websites
can be successfully opened.

A.4 Evaluation workflow
A4.1 Major Claims

(C1): WDFuzz achieves 92.6% recall in known vulnera-
bility detection of web applications. Compared to the
state-of-the-art web application fuzzer Witcher, WD-
Fuzz finds 3.2 times more vulnerabilities and detects
them 7.1 times faster. This is proven by the experiment
(E1) described in §5.3 whose results are reported in Ta-
ble 1.

(C2): Each module of WDFUZz (i.e., entry extraction,
constraint extraction, and hierarchical scheduling) con-
tributes to a notable increase in recall rates for known
vulnerabilities, with improvements ranging from 20% to
30%. This is proven by the experiment (E2) described
in §5.5 whose results are reported in Table 2.

A.4.2 Experiments

(E1): Known vulnerability reproduction [10 human-hours
+ 40 compute-hours + 100GB disk]: this experiment
demonstrates that the proposed WDFUZZ outperforms
the state-of-the-art fuzzer Witcher in both vulnerability
detection effectiveness and efficiency by reproducing
the known vulnerabilities in the benchmark web applica-
tions.

Preparation: First, please make sure the environ-
ments being set up as described in §A.3.1, includ-
ing Python3, Rust, Docker, chrome, chrome-driver,
and web applications under test. Then some di-
rectories must be created before testing by run-
ning commands mkdir $HOME/wdfuzz_data, mkdir
SHOME /wdfuzz_data/fuzz_apps_class and mkdir
SHOME /wdfuzz_data/jdf_data.

Execution: Run fuzz_<app>.sh in ./DF direc-
tory for the full experiment of WDFUZZ, and run



fuzz.sh in the docker container of each web appli-
cation for the Witcher experiment. You can refer to
quick-reproduction-guide.pdf for more details.
Results: The vulnerability detection re-
sults of WDFuzz will be in the directory
SHOME /wdfuzz_data/<date>_<app>. Each record in
the text file vuln_testcase.log means that WDFUZZ
has detected a vulnerability. Please refer to the entry
paths of the known vulnerabilities in Table | to get the
recall rate of the known vulnerabilities. Vulnerabilities
that are not in Table | are the unknown vulnerabilities
detected by WDFuzz.

The results of Witcher experiment will be inside the
docker container. Typically, the results are under the
directory /root/user/WICHR/<app>-WICHR. Please
check the run_summary.txt file to get the vulnerabili-
ties identified by Witcher.

We provide a set of utility scripts within
log_comparison_scripts.zip. For comparing
WDFuzz’s results, you can use the following com-
mand to extract the recall of known vulnerabilities
from the logs: python3 wdfuzz_log_compare.py
--project <web app name> --log <path to
vuln_testcase.log>. For comparing Witcher’s
results, use the following command: python3
witcher_log_compare.py —--project <web app
name> --log <path to run_summary.txt>.

(E2): Ablation study [15 human-hours + 60 compute-hours +
30GB disk]: this experiment proves that each module of
WDFuzz makes a notable contribution to vulnerability
detection by evaluating the performance after ablating
each module of WDFuzz.

Preparation: The same as the experiment (E1).
Execution: Run fuzz_<app>_ablation<l or 2 or
3>.shin ./DF directory for the ablation study. Please
note that for some web applications, CrawlerGo failed
to crawl any usable URLs, and as a result there is no
ablation_1 experiment (i.e., the WDFUZZ, baseline).
Results: The same as the experiment (E1).

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

Table 1: Known vulnerablilities.

Application

Vulnerable entry path

jeecg-boot

/sys/duplicate/check
/jmreport/queryFieldBySql
/jmreport/show
/sys/api/queryTableDictItemsByCode
/sys/dict/queryTableData

jeesite

/a/act/task/start
/userfiles
/a/sys/user/export

jshERP

/user/list
/msg/getMsgCountByStatus
/msg/list

/unit/list

/role/list

/account/list
/depotHead/list
/materialProperty/list

MCMS

/ms/mdiy/dict/1list (CVE-2021-46383)
/ms/cms/category/list

/ms/mdiy/page/verify
/ms/template/writeFileContent

/mdiy/dict/list

/ms/mdiy/dict/1list (CVE-2022-27466)
/cms/content/1list (CVE-2022-26585)
/ms/template/writeFileContent (CVE-2021-46062)
/ms/template/writeFileContent (CVE-2021-46063)
/cms/content/1list (CVE-2022-23898)
/ms/template/unZip

/mdiy/dict/listExcludeApp

RuoYi

/system/dept/edit
/demo/form/localrefresh/task
/common/download/resource
/common/download
/system/role/authUser/unallocatedList
/system/role/export
/system/role/authUser/allocatedList
/system/user/export
/system/role/list

/system/user/list
/system/dept/treeData

SpringBlade

/blade-user/export-user

Halo

/api/admin/themes/fetching

DreamerCMS

/admin/search/doSearch
/search

PublicCMS

/admin/ueditor?action=catchimage (CVE-2020-20914)
/admin/sysSite/execSql
/admin/ueditor?action=catchimage (CVE-2021-27693)
/admin/#site_sysSite/script
/admin/ueditor?action=catchimage (CVE-2024-40543)
/admin/cmsTemplate/replace

Yudao

No known vulnerabilities

lamp-boot

No known vulnerabilities

WebGoat

/SqlInjection/attack8
/SqlInjection/attack4
/Sglinjection/attack2
/Sgllnjection/attack5b
/SqglInjectionAdvanced/challenge
/SqlInjection/attackl0
/challenge/5
/SqglInjection/attack3
/SqlInjection/attack9
/SqlInjection/assignment5a
/SqglInjectionAdvanced/attacké6a
/SqlInjectionMitigations/servers
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