ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

é;uSEnIX fusenlx
ASSOCIATION ASSOCIATION

AVAILABLE

USENIX Security 25 Artifact Appendix: Effective Directed Fuzzing with
Hierarchical Scheduling for Web Vulnerability Detection

Zihan Lin, Yuan Zhang, Jiarun Dai, Xinyou Huang, Bocheng Xiang, Guangliang Yang, Letian Yuan, Lei
Zhang, Fengyu Liu, Tian Chen, and Min Yang

Fudan University

A Artifact Appendix

A.1 Abstract

This is the artifact evaluation appendix for paper “Effective
Directed Fuzzing with Hierarchical Scheduling for Web Vul-
nerability Detection.” In this work, we propose a novel di-
rected fuzzing approach, called WDFUZz, that can effectively
vet the security of Java web applications. Our WDFuUzz ap-
proach is two-fold. First, we develop a semantic constraint
extraction technique to accurately capture the expected input
structures and constraints of web parameters. Second, we im-
plement a hierarchical scheduling strategy that evaluates the
potential of each seed to trigger vulnerabilities and prioritizes
the most promising seeds. In our evaluation against real-world
Java web applications, WDFUZz achieved a 92.6% recall rate
in the known vulnerability dataset, finding 3.2 times more
vulnerabilities and detecting them 7.1 times faster than the
state-of-the-art web fuzzer Witcher.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The evaluation process does not raise any ethical concerns.
Our benchmark dataset consists of older versions of web ap-
plications with known vulnerabilities. When deploying these
applications on the evaluator’s local machines, it is recom-
mended not to allow external access to these applications to
prevent attacks from external attackers.

A.2.2 How to access

The artifact can be downloaded from the Zenodo record'. Af-
ter downloaded, first concatenate all the splitted compressed
files with the following command:

cat WDFUZZ_part_* > WDFUZZ.tar.gz

Then unzip the file with this command:

tar xvf WDFUZZ.tar.gz

Thttps://zenodo.org/records/15128608

A.2.3 Hardware dependencies

At least 60 GB RAM and 200 GB free disk space are needed
to run the Artifact Evalution. We run our experiments on a
Ubuntu 18.04 server with 64-core Intel E7-4820 v2 2.00GHz
CPU, 173 GB RAM and 1 TB disk.

A.2.4 Software dependencies

A Unix-like system is required for Artifact Evaluation. We
recommend using Ubuntu 18.04. The other software depen-
dencies are listed below.

« Static Analysis. Java 17 is required to run the Tai-e static
analysis.

« Instrumentation. (1) Java 8° and (2) mvn* are needed to
compile the instrumentation program. (3) GCC” is needed
to compile the LD_PRELOAD binary.

 Dynamic Fuzzing. (1) Python3° and libraries (i.e., requests,
pyyaml, and selenium) is needed to run the fuzzer’s wrap-
per scripts. (2) Rust’ is needed to run the core LibAFL
fuzzer. (3) Docker® is needed to set up Web applications.
(4) Chrome and chrome-driver’ are needed to login web
applications automatically.

4

A.2.5 Benchmarks

Our artifact contains 12 open-source web applications as
benchmark dataset. Please refer to Table 1 in the paper
for the detailed application list. The Docker images of
these web applications are located in the ./dataset di-
rectory within the artifact. To implement and setup these

Zhttps://www.oracle.com/java/technologies/javase/jdk17-0
-13-later-archive-downloads.html

3https://www.oracle.com/java/technologies/javase/javase
8u2ll-later-archive-downloads.html

4https://maven.apache.org/download.cgi

SUse sudo apt install build-essential to install.

%Use sudo apt install python3 python3-pip to install.

Thttps://forge.rust-lang.org/infra/other-installation-m
ethods.html

8nttps://docs.docker.com/engine/install/ubuntu/

9https://googlechromelabs.github.io/chrome-for-testing

https://zenodo.org/records/15128608
https://www.oracle.com/java/technologies/javase/jdk17-0-13-later-archive-downloads.html
https://www.oracle.com/java/technologies/javase/jdk17-0-13-later-archive-downloads.html
https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-downloads.html
https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-downloads.html
https://maven.apache.org/download.cgi
https://forge.rust-lang.org/infra/other-installation-methods.html
https://forge.rust-lang.org/infra/other-installation-methods.html
https://docs.docker.com/engine/install/ubuntu/
https://googlechromelabs.github.io/chrome-for-testing

applications for fuzzing, please refer to the document in
quick-reproduction-guide.pdf. Due to legal and licens-
ing reasons, we cannot provide the 3 closed-source commer-
cial web applications tested in the paper for Artifact Evalu-
ation. We believe that the experiment results from the open-
source applications are sufficient to prove the claims in the

paper.

A.3 Set-up
A.3.1 Installation

Python3, Rust, chrome and chrome-driver must be installed
to run WDFuzz.

Python3 and library installation. First, we recommend us-
ing this command on Ubuntu servers to install Python3 envi-
ronment:

sudo apt install python3 python3-pip

Then use this command to install necessary Python3 libraries:
pip install requests pyyaml selenium

Rust, chrome and chrome-driver installation. We recom-
mend installing Rust, chrome and chrome-driver according to
the instructions on their official websites, which are listed in
the footnote.

Web applications installation. Before start fuzzing, web ap-
plications under test should be installed. We recommend to
set up these web applications using the Docker images in
the artifact (within . /dataset directory) and following the
guidance in quick-reproduction-guide.pdf. The base-
line tool Witcher is also installed in the Docker images.

[Optional] Java, GCC, and mvn installation. Java, GCC,
and mvn are optional to install because we have pre-compiled
binaries for instrumentation and ready-to-use static analysis
results. To recompile these components, please refer to the
installation guide in WDFuzz-README. pdf.

A.3.2 Basic Test

Please run the following commands to check if necessary
environments have been installed. The output examples are
the outputs obtained in our test environment.

* Check Rust environment.

Command:

cargo --version

Output example:

cargo 1.79.0 (ffa9cf99%a 2024-06-03)

Command:

rustc --version

Output example:

rustc 1.79.0 (129£3b996 2024-06-10)
* Check Python3 environment.

Command:

python3 --version
Output example:
Python 3.6.9
¢ Check Docker environment.
Command:
docker --version
Output example:
Docker version 20.10.21, build
20.10.21-0ubuntul~18.04.3
¢ Check chrome-driver environment.
Command:
chromedriver --version
Output example:
ChromeDriver 132.0.6834.83 ...
¢ Check web applications under test.
You just need to use your browser to check if the websites
can be successfully opened.

A.4 Evaluation workflow
A4.1 Major Claims

(C1): WDFuzz achieves 92.6% recall in known vulnera-
bility detection of web applications. Compared to the
state-of-the-art web application fuzzer Witcher, WD-
Fuzz finds 3.2 times more vulnerabilities and detects
them 7.1 times faster. This is proven by the experiment
(E1) described in §5.3 whose results are reported in Ta-
ble 1.

(C2): Each module of WDFUZz (i.e., entry extraction,
constraint extraction, and hierarchical scheduling) con-
tributes to a notable increase in recall rates for known
vulnerabilities, with improvements ranging from 20% to
30%. This is proven by the experiment (E2) described
in §5.5 whose results are reported in Table 2.

A.4.2 Experiments

(E1): Known vulnerability reproduction [10 human-hours
+ 40 compute-hours + 100GB disk]: this experiment
demonstrates that the proposed WDFUZZ outperforms
the state-of-the-art fuzzer Witcher in both vulnerability
detection effectiveness and efficiency by reproducing
the known vulnerabilities in the benchmark web applica-
tions.

Preparation: First, please make sure the environ-
ments being set up as described in §A.3.1, includ-
ing Python3, Rust, Docker, chrome, chrome-driver,
and web applications under test. Then some di-
rectories must be created before testing by run-
ning commands mkdir $HOME/wdfuzz_data, mkdir
SHOME /wdfuzz_data/fuzz_apps_class and mkdir
SHOME /wdfuzz_data/jdf_data.

Execution: Run fuzz_<app>.sh in ./DF direc-
tory for the full experiment of WDFUZZ, and run

fuzz.sh in the docker container of each web appli-
cation for the Witcher experiment. You can refer to
quick-reproduction-guide.pdf for more details.
Results: The vulnerability detection re-
sults of WDFuzz will be in the directory
SHOME /wdfuzz_data/<date>_<app>. Each record in
the text file vuln_testcase.log means that WDFUZZ
has detected a vulnerability. Please refer to the entry
paths of the known vulnerabilities in Table | to get the
recall rate of the known vulnerabilities. Vulnerabilities
that are not in Table | are the unknown vulnerabilities
detected by WDFuzz.

The results of Witcher experiment will be inside the
docker container. Typically, the results are under the
directory /root/user/WICHR/<app>-WICHR. Please
check the run_summary.txt file to get the vulnerabili-
ties identified by Witcher.

We provide a set of utility scripts within
log_comparison_scripts.zip. For comparing
WDFuzz’s results, you can use the following com-
mand to extract the recall of known vulnerabilities
from the logs: python3 wdfuzz_log_compare.py
--project <web app name> --log <path to
vuln_testcase.log>. For comparing Witcher’s
results, use the following command: python3
witcher_log_compare.py —--project <web app
name> --log <path to run_summary.txt>.

(E2): Ablation study [15 human-hours + 60 compute-hours +
30GB disk]: this experiment proves that each module of
WDFuzz makes a notable contribution to vulnerability
detection by evaluating the performance after ablating
each module of WDFuzz.

Preparation: The same as the experiment (E1).
Execution: Run fuzz_<app>_ablation<l or 2 or
3>.shin ./DF directory for the ablation study. Please
note that for some web applications, CrawlerGo failed
to crawl any usable URLs, and as a result there is no
ablation_1 experiment (i.e., the WDFUZZ, baseline).
Results: The same as the experiment (E1).

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

Table 1: Known vulnerablilities.

Application

Vulnerable entry path

jeecg-boot

/sys/duplicate/check
/jmreport/queryFieldBySql
/jmreport/show
/sys/api/queryTableDictItemsByCode
/sys/dict/queryTableData

jeesite

/a/act/task/start
/userfiles
/a/sys/user/export

jshERP

/user/list
/msg/getMsgCountByStatus
/msg/list

/unit/list

/role/list

/account/list
/depotHead/list
/materialProperty/list

MCMS

/ms/mdiy/dict/1list (CVE-2021-46383)
/ms/cms/category/list

/ms/mdiy/page/verify
/ms/template/writeFileContent

/mdiy/dict/list

/ms/mdiy/dict/1list (CVE-2022-27466)
/cms/content/1list (CVE-2022-26585)
/ms/template/writeFileContent (CVE-2021-46062)
/ms/template/writeFileContent (CVE-2021-46063)
/cms/content/1list (CVE-2022-23898)
/ms/template/unZip

/mdiy/dict/listExcludeApp

RuoYi

/system/dept/edit
/demo/form/localrefresh/task
/common/download/resource
/common/download
/system/role/authUser/unallocatedList
/system/role/export
/system/role/authUser/allocatedList
/system/user/export
/system/role/list

/system/user/list
/system/dept/treeData

SpringBlade

/blade-user/export-user

Halo

/api/admin/themes/fetching

DreamerCMS

/admin/search/doSearch
/search

PublicCMS

/admin/ueditor?action=catchimage (CVE-2020-20914)
/admin/sysSite/execSql
/admin/ueditor?action=catchimage (CVE-2021-27693)
/admin/#site_sysSite/script
/admin/ueditor?action=catchimage (CVE-2024-40543)
/admin/cmsTemplate/replace

Yudao

No known vulnerabilities

lamp-boot

No known vulnerabilities

WebGoat

/SqlInjection/attack8
/SqlInjection/attack4
/Sglinjection/attack2
/Sgllnjection/attack5b
/SqglInjectionAdvanced/challenge
/SqlInjection/attackl0
/challenge/5
/SqglInjection/attack3
/SqlInjection/attack9
/SqlInjection/assignment5a
/SqglInjectionAdvanced/attacké6a
/SqlInjectionMitigations/servers

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

