ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security 25 Artifact Appendix: A Formal Analysis of Apple’s
iMessage PQ3 Protocol

Felix Linker
Department of Computer Science, ETH Zurich

Ralf Sasse
Department of Computer Science, ETH Zurich

David Basin
Department of Computer Science, ETH Zurich

A Artifact Appendix
A.1 Abstract

We present the formal verification of Apple’s iMessage PQ3,
a highly performant, device-to-device messaging protocol
offering strong security guarantees even against an adversary
with quantum computing capabilities. PQ3 leverages Apple’s
identity services together with a custom, post-quantum secure
initialization phase and afterwards it employs a double ratchet
construction in the style of Signal, extended to provide post-
quantum, post-compromise security.

We present a detailed formal model of PQ3, a precise spec-
ification of its security properties, and machine-checked secu-
rity proofs using the TAMARIN prover. Our analysis covers
both key ratchets, including unbounded loops, which was be-
lieved by some to be out of scope of symbolic provers like
TAMARIN (it is not!). Our artifact provides a pseudocode
specification of PQ3, our model of both PQ3 and its security
properties, and case studies illustrating how one can prove
protocols like PQ3 using TAMARIN.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Our artifact is available at: https://doi.org/10.5281/
zenodo.14710687.

The artifact is structured as follows. We omit files and fold-
ers that are only included for technical reasons. Instructions
on how to use the scripts are provided in Section A.4.2.

case-study Contains the example theories used to illus-
trate our proof methodology.

proofs Contains proofs for lemmas that cannot be proven
automatically and a script to check individual proofs.

spec Contains an iMessage PQ3 pseudocode specification.

model . spthy Our formal model of iMessage PQ3.

oracle.py A proof heuristic aiding proof construction.

prove—auto.sh A script that constructs proves for all
automatically provable lemmas.

prove—expensive.sh A script that constructs the proof
for an automatically provable but computationally ex-
pensive lemma.

wellformedness.sh A scriptthat checks that our model
is well-formed.

A.2.3 Hardware dependencies

Using Tamarin requires no special hardware. However, some
proofs require significant time and memory for construction
or verification. Ideally, the machine used should have 140 GB
or more of memory. Proofs were constructed and timed on a
server with 252 GB of memory and two Intel Xeon E5-2650
v4 CPUs, i.e., a 48-thread server.

However, note that Tamarin uses RAM inefficiently.
Tamarin stores the entire proof tree, but a proof only needs to
access a path in the proof tree. Therefore, memory compres-
sion can help you check proofs on machines with much less
memory than indicated. For example, some proofs were con-
structed on a MacBook Pro with only 32 GB of memory and
an Apple M2 Max CPU, where we observed 100 GB of virtual
memory usage but only 5-10 GB of physical memory usage.

A.2.4 Software dependencies

All major operating systems can be used. We used Ubuntu
24.04 when timing proofs (see Section A.4.2).

To use our artifact, you must have the following tools in-
stalled:

e Tamarin v1.8.0 or higher. Installation instructions
are provided at: https://tamarin-prover.com/
manual/master/book/002_installation.html.
We recommend using brew.

* Maude v3.1 or higher. When installing Tamarin with
brew, you will also install Maude. In any other case, the
Tamarin manual provides more information on how to
install Maude.


https://doi.org/10.5281/zenodo.14710687
https://doi.org/10.5281/zenodo.14710687
https://tamarin-prover.com/manual/master/book/002_installation.html
https://tamarin-prover.com/manual/master/book/002_installation.html

 Python 3. Python 3 is a major, well-supported program-
ming language. We therefore do not provide instructions
on how to install it.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Download our artifact and extract it.

A.3.2 Basic Test

Open a shell in the artifacts directory and run the following
script:

./wellformedness.sh

This should take no more than 5 minutes. If the command
terminated successfully, you will see a list of lemmas (e.g.,
Auto_ChainKeySources) all marked as analysis incomplete.
Above that, you will see the Tamarin and Maude versions
used. Above that, you should see the text “All wellformedness
checks were successful.”

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Proofs for all security properties and auxiliary lemmas
of our PQ3 Messaging Protocol can be constructed or
verified.

(C2): Proofs for all lemmas of our case study models can be
constructed.

A.4.2 Experiments

For experiments E2 and E3, our artifact lists approximate
time and memory requirements for each script or proof file in
the respective README. As noted in A.2.3, you may need
much less physical memory than indicated when utilizing
your operating system’s memory compression.

Experiments (E1)-(E3) together prove iMessage PQ3’s se-
curity, as described in Section 5 of our paper. (E4) constructs
proofs for the case study models described in Appendix A of
our paper.

(E1): [Verity Wellformedness] [5 human-minutes + 5
compute-minutes]:
How to: Execute the script wellformendness. sh.
Results: Observe that the output contains “All well-
formedness checks were successful.”

(E2): [Prove auto-provable lemmas] [5 human-minutes]:

How to: Execute the scripts prove-auto.sh and
prove-expensive.sh. Note that the latter script may take
a day or more to construct the proof.
Results: Observe that (i) the output of prove-auto.sh
shows every lemma prefixed with auto_* as “verified”,
and (ii) the output of prove-expensive.sh shows the
lemma prefixed with Expensive_Auto_* as “verified.”
(E3): [Verify constructed proofs] [5 human-minutes]:
How to: Navigate to the proots directory. Execute the
script check. sh for each . spthy file in the proofs direc-
tory. For example:

./check.sh CkCompromise.spthy

Results: Observe that when checking every proof file,
the lemma named like the proof file is shown as “veri-
fied.” Also, observe that every lemma in the original file
model.spthy was shown to be verified in this experiment
or experiment E2.

(E4): [Prove case studies] [5 human-minutes + 1 compute-
minute]:
How to: Navigate to the case-study directory. For each
.spthy file in the directory, run:

tamarin-prover --prove <FILE>

Results: Observe that for each file, all lemmas are
shown as “verified.”

A.5 Notes on Reusability

Our artifact is not intended for reuse. We hope, however, that
our case studies serve as educational examples for how to
prove protocols secure, which exhibit similar looping behavior
to the PQ3 Messaging Protocol.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


