
USENIX Security ’25 Artifact Appendix:
OBLIVIATOR: OBLIVIous Parallel Joins and other OperATORs

in Shared Memory Environments

Apostolos Mavrogiannakis*

UCSC
Xian Wang*

HKUST
Ioannis Demertzis

UCSC

Dimitrios Papadopoulos
HKUST

Minos Garofalakis
ATHENA Research Center &
Technical University of Crete

A Artifact Appendix

A.1 Abstract

We introduce oblivious parallel operators designed for both
non-foreign key and foreign key equi-joins. Obliviousness
ensures nothing is revealed about the data besides input/out-
put sizes, even against a strong adversary that can observe
memory access patterns. Our solution achieves this by com-
bining trusted hardware with efficient oblivious primitives for
compaction and sorting, and two oblivious algorithms: (i) an
oblivious aggregation tree, which can be described as a varia-
tion of the parallel prefix sum, customized for trusted hard-
ware, and (ii) a novel algorithm for obliviously expanding the
elements of a relation. We then implemented our non-foreign
key join and foreign key join with the two new algorithms.
In the sequential setting, our oblivious join performs 4.6×-
5.14× faster than the prior state-of-the-art solution (Krast-
nikov et al., VLDB 2020) on data sets of size n = 224. In the
parallel setting, our algorithm achieves a speedup of up to
roughly 16× over the sequential version, when running with
32 threads (becoming up to 80× compared to the sequential
algorithm of Krastnikov et al.). Finally, our oblivious oper-
ators can be used independently to support other oblivious
relational database queries, such as oblivious selection and
oblivious group-by, which are implemented and evaluated
with complex database queries.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

There is no malicious or destructive operations in the artifact.
We propose algorithms and implement systems with a positive
impact on preserving data privacy. The artifact does not han-
dle any sensitive data or personal information. All our tests

1The two first authors contributed equally to this work and their names
are listed here alphabetically.

were executed either on synthetic datasets or on publicly avail-
able real-world datasets. The ethical implications have also
been carefully considered and our work is in full accordance
with the 2025 USENIX Security ethics guidelines.

A.2.2 How to access

We open-source all code, datasets and scripts necessary for
the evaluation of Obliviator and they can be accessed at [2].

A.2.3 Hardware dependencies

To evaluate the functionality of our artifact, we require a
machine with an Intel processor and at least 9GB memory.

A.2.4 Software dependencies

Our implementations are for Linux OS. The artifact requires
gcc-7 and g++-7. For all other software dependencies, e.g.,
the Open Enclave SDK [3], Intel SGX SDK [1], we provide
scripts (./scripts/ae-install-dependencies.sh) to install them.
In the script, the detailed package versions are chosen for the
Ubuntu 20.04 environment.

A.2.5 Benchmarks

We provide ready-to-use datasets for some experiments in our
paper. Other experiments need large datasets (hundreds of
GB), and we provide scripts to download and process them.
The datasets and scripts are in their corresponding sub-folders
in ./data denoted by their dataset names. To evaluate the func-
tionality of our artifact, the original hundreds of GB input
datasets are not necessary and we provide a test input file
(test.txt) within program folders (e.g., ./join/test.txt).

1 g i t c l o n e [GitHub l i n k t o t h e a r t i f a c t]
2 cd . / o b l i v i a t o r
3 chmod +x . / s c r i p t s / ae *
4 . / s c r i p t s / ae − i n s t a l l − d e p e n d e n c i e s . sh
5 s o u r c e ~ / . b a s h r c
6 . / s c r i p t s / ae − i n t e l −sgx . sh
7 cd ~ / l i n u x −sgx
8 [L a s t commands p r i n t e d in t h e t e r m i n a l]
9 cd ~ / o b l i v i a t o r

10 . / s c r i p t s / ae − b a s i c − t e s t . sh

Figure 1: Commands for set-up.

A.3 Set-up
A.3.1 Installation

To install the artifact and dependencies, we provide com-
mands for reference in Figure 1. It may needs 1 hour in total
(depending on detailed machines). After the execution of
the command at line 6, another suggested command will be
printed in the terminal. Please change the directory to an-
other folder as suggested at line 7, and execute the command
printed in the terminal. If there is any issue and error regard-
ing the dependency installation, we suggest to execute the
commands provided in ./scripts/ae-install-dependencies.sh
and ./scripts/ae-intel-sgx.sh line by line to narrow down the
detailed incorrect steps.

A.3.2 Basic Test

We provide ./scripts/ae-basic-test.sh to check compilation and
see if all software dependencies are installed successfully.
Please refer to line 9-10 in Figure 1. Error information will
be printed in the terminal if it is not executed successfully.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We propose and implement the new oblivious parallel
non-foreign key (NFK) join algorithm. Its function is
to join two tables, i.e., matching table rows based on
a given join attribute. Its performance with respect to
consumed time is expected to be 2.86−77× compared
to KKS and KKS* [7], as reported in Section 5.1 of our
paper (Table 2, Figure 9 and 10).

(C2): We propose and implement the new oblivious parallel
foreign key (FK) join algorithm. Its function is to join a
primary key table and a foreign key tables, where the join
attribute in the primary table is distinct. Its performance
with respect to consumed time is expected to be 1.7−
60× compared to Opaque [10], as reported in Section 5.1
of our paper (Table 2 and Figure 11 top left sub-figure).

(C3): We propose and implement the new oblivious filter
operator. Its function is to retrieve specific subsets of

1 . / s c r i p t s / ae −e1 . sh
2 . / s c r i p t s / ae . sh

Figure 2: Commands for experiments.

elements from a database. Its performance with respect
to consumed time is expected to be 2.8− 52.3× com-
pared to Opaque, as reported in Section 5.2 of our paper
(Figure 11 bottom sub-figure).

(C4): We propose and implement the new oblivious aggre-
gation operator. Its function is to generate statistics or a
summary of multiple table rows. Its performance with
respect to consumed time is expected to be 2.5− 53×
compared to Opaque, as reported in Section 5.2 of our
paper (Figure 11 bottom sub-figure).

(C5): We also implement complex queries to test the above
separate operators together. Their function is to ob-
tain the final results of several given operators based
on their detailed query requirements [4, 5]. Its perfor-
mance with respect to consumed time is expected to be
2.58− 37.57× compared with Opaque, as reported in
Section 5.2 of our paper (Figure 11 top right and bottom
sub-figures).

A.4.2 Experiments

The evaluation consists of five experiments corresponding to
the five claims in Section A.4.1. We provide a script (./script-
s/ae.sh) for them, and please refer to the suggested commands
in Figure 2 to execute the following five experiments. Al-
ternatively, evaluators can run ./scripts/ae-e1.sh for E1 sub-
experiment, ./scripts/ae-e2.sh for E2 sub-experiment, etc., sep-
arately.
(E1): [NFK Join] [5 compute-minutes + 9GB memory]: This

experiment evaluates the NFK join of Obliviator, and
compares it with KKS*. We are expected to see two
floating point numbers printed in the terminal, which cor-
respond to the consumed time of Obliviator and KKS*.
Our result is expected to be faster than KKS and KKS*
and have the suggested speedup as introduced in C1 Sec-
tion A.4.1. We also conduct E1 on a PC where Obliviator
and KKS* take 0.0365 and 0.1294 seconds respectively.

(E2): [FK Join] [5 compute-minutes + 9GB memory]: This
experiment evaluates the FK join of Obliviator, and com-
pares it with Opaque. We are expected to see two floating
point numbers printed in the terminal, which correspond
to the consumed time of Obliviator and Opaque. Our
result is expected to be faster than Opaque and have the
suggested speedup as introduced in C2 Section A.4.1.
We also conduct E2 on a PC where Obliviator and
Opaque take 0.0002 and 0.0004 seconds respectively.

(E3): [Filter Query] [5 compute-minutes + 9GB memory]:
This experiment evaluates the filter quert of Oblivia-

tor, and compares it with Opaque. We are expected to
see two floating point numbers printed in the terminal,
which correspond to the consumed time of Obliviator
and Opaque. Our result is expected to be faster than
Opaque and have the suggested speedup as introduced
in C3 Section A.4.1. We also execute E3 on a PC where
Obliviator and Opaque take 0.0076 and 0.1288 seconds
respectively.

(E4): [Aggregation Query] [5 compute-minutes + 9GB mem-
ory]: This experiment evaluates the NFK join of Oblivi-
ator, and compares it with Opaque. We are expected to
see two floating point numbers printed in the terminal,
which correspond to the consumed time of Obliviator
and Opaque. Our result is expected to be faster than
Opaque and have the suggested speedup as introduced
in C4 Section A.4.1. We also execute E4 on a PC where
Obliviator and Opaque take 0.1522 and 0.3788 seconds
respectively.

(E5): [Complex Query] [5 compute-minutes + 9GB mem-
ory]: This experiment evaluates the NFK join of Oblivi-
ator, and compares it with KKS and KKS*. We are ex-
pected to see six floating point numbers printed in the
terminal, which correspond to the consumed time of
Obliviator (the first three numbers) and Opaque (the last
three numbers). Our result is expected to be faster than
Opaque and have the suggested speedup as introduced in
C5 Section A.4.1. We also executed E5 on a PC where
Obliviator and Opaque spent 1.1705 (the sum of the first
3 numbers) and 3.4669 (the sum of the last 3 numbers)
seconds respectively.

A.5 Notes on Reusability.

To reproduce the evaluation of the same experiments with
hardware mode in our paper, large machines are required. We
are unable to support the original evaluation here due to the
large scale and our recent shortage of Intel SGX. The detailed
original machine configuration is described in the Section 5
of our paper. Additionally, for reference, the detailed original
configuration file for Intel SGX is given in ./script/paral-
lel.conf. If users have an access to such large machines as our
paper (i.e., Azure Standard_DC32ds_v3) and want to repro-
duce, please replace ./[program name]/enclave/parallel.conf
with ./scripts/parallel.conf. And, for Obliviator, set the
third parameter for oe_create_paralle_enclave in ./[program
name]/host/parallel.c to be 0 (replacing the original
OE_ENCLAVE_FLAG_SIMULATE), for KKS* (i.e.,
./join_kks), set SGX_MODE in Makefile to be HW (or
replace Makefile with the content in SGX_Makefile). Note
that, to run KKS*, you need to further install the SGX PSW
and Openssl, refer [1] or check ./scripts/intel-sgx2.sh .

We improve the scalability of the oblivious operators by de-
signing efficient and fully parallel algorithms, and do not have
extra optimizations for its paging overhead. We give our obliv-

iousness proof in our extended paper [8]. And as mentioned
in our paper, Intel Pin tool [6] and oblivious constant-time
instructions from [9] are also used to help avoid software
side-channel attacks for Intel SGX mentioned in our thread
model Section 2.

When users test our programs with their own datasets, they
are suggested to pay attention to the enclave configuration
file parallel.conf and ensure the number of max threads, size
of heap, stack (in parallel.conf) and MAX_BUF_SIZE (in
parallel.c) are enough.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

References

[1] Intel(r) software guard extensions for linux* os. https://
github.com/intel/linux-sgx.

[2] Obliviator. https://zenodo.org/records/15169905.

[3] Open enclave. https://github.com/openenclave/
openenclave.

[4] Tpc-h benchmark. http://www.tpc.org/tpch.

[5] AMPLab, University of California, Berkley. Big data bench-
mark. https://amplab.cs.berkeley.edu/benchmark/,
2014.

[6] Intel. Pin - a dynamic binary instru-
mentation tool. https://www.intel.com/
content/www/us/en/developer/articles/tool/
pin-a-dynamic-binary-instrumentation-tool.html.

[7] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila.
Efficient oblivious database joins. VLDB, 2020.

[8] Apostolos Mavrogiannakis, Xian Wang, Ioannis Demertzis,
Dimitrios Papadopoulos, and Minos Garofalakis. OBLIVIA-
TOR: Oblivious parallel joins and other operators in shared
memory environments. Cryptology ePrint Archive, Paper
2025/183, 2025.

[9] Nicholas Ngai, Ioannis Demertzis, Javad Ghareh Chamani, and
Dimitrios Papadopoulos. Distributed & Scalable Oblivious
Sorting and Shuffling . In 2024 IEEE Symposium on Security
and Privacy (SP), pages 4277–4295, Los Alamitos, CA, USA,
May 2024. IEEE Computer Society.

[10] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada
Popa, Joseph E. Gonzalez, and Ion Stoica. Opaque: An obliv-
ious and encrypted distributed analytics platform. In 14th
USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 17), pages 283–298, Boston, MA, 3 2017.
USENIX Association.

https://secartifacts.github.io/usenixsec2025/
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://zenodo.org/records/15169905
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave
https://amplab.cs.berkeley.edu/benchmark/
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability.
	Version

