
USENIX Security ’25 Artifact Appendix: Oblivious Digital Tokens

Mihael Liskij
ETH Zurich

Xuhua Ding
Singapore Management University

Gene Tsudik
UC Irvine

David Basin
ETH Zurich

A Artifact Appendix

A.1 Abstract
Our artifact consists of two parts:
(A1): A Tamarin model of the protocol we use to prove that

our protocol satisfies the binding integrity property. It
consists of an ODT protocol model and a proof that the
model satisfies this property.

(A2): The ODT protocol prototype implementation. It con-
sists of an ODT client implementation that uses Intel
SGX with OpenSSL, an ODT server implementation
based on OpenSSL, various auxiliary scripts, and the
raw measurement results. We also provide a Dockerfile
and Docker image for easy setup and testing.

Each component comes with a README.md document that
describes how to setup and use the component.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

One of our scripts for artifact (A2) temporarily disables ad-
dress space layout randomization (ASLR) until it is completed.
However, in case the script is interrupted, ASLR might remain
disabled until the computer is restarted. To remedy this, we
provide a script enable_aslr.sh that the evaluators can use
at the end of their evaluation of artifact (A2) to ensure that
ASLR is enabled. In case you use the Docker deployment of
artefact (A2), this is no longer a potential problem.

A.2.2 How to access

The latest artifact version can be found on GitHub1 and on
Zenodo2.

A.2.3 Hardware dependencies

Artifact (A1) does not require special hardware and the com-
plete proof can be computed and inspected on commodity
hardware with 8 GB of RAM and 10 GB of swap space. It
takes up to 30 minutes to compute the proof and up to 30 min-
utes to open it for inspection, with an Intel(R) Core(TM)

1https://github.com/Anonymous-Usenix-25/Oblivious-
Digital-Tokens/releases/tag/usenix

2https://zenodo.org/records/14765576

i5-10210U CPU @ 1.60GHz CPU. The model and the proof
itself need only 1 MB of storage space.

Artifact (A2) requires an Intel processor with at least SGX1
capabilities; SGX2 capabilities are not required. We test and
develop artifact (A2) on the same device as artifact (A1). After
installation, the artifact needs between 5 and 6 GB of space
on the filesystem.

A.2.4 Software dependencies

Artifact (A1) requires the Tamarin prover, which is available
for MacOS, Linux, and Windows.

Artifact (A2) is developed for Linux. It requires the Intel
SGX SDK driver, Intel SGX SDK library, Intel SGX PSW li-
brary, the Intel SGX SSL library, and an OpenSSL installation.
We provide instructions on how to setup the build tools and
the Intel SGX SDK driver. For the rest of the dependencies,
we provide a script that allows a user to interactively install
them, and a Docker image (and corresponding Dockerfile)
where the dependencies are installed automatically. For both
options, the dependencies are fixed to specific versions and
should continue to install and work in the future. Note that
Docker containers use the SGX driver from the host kernel.
Therefore, it is mandatory to install the Intel SGX SDK driver
on the host system.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

The artifacts can be downloaded from Github and Zotero,
as specified in Section A.2.2. Artifact (A1) is stored in the
tamarin_proof directory and artifact (A2) is stored in the
ODT_implementation directory.

Artifact (A1) does not need to be installed, but requires the
Tamarin prover to inspect it. Installation instructions can be
found on the following URL: https://tamarin-prover.
com/manual/master/book/002_installation.html.

Artifact (A2) must be installed, either manually or through
Docker, and requires the Intel SGX driver. The Intel SGX
driver is included in the newer Linux kernels, but it must be
explicitly installed for older ones. Therefore, we recommend

https://github.com/Anonymous-Usenix-25/Oblivious-Digital-Tokens/releases/tag/usenix
https://github.com/Anonymous-Usenix-25/Oblivious-Digital-Tokens/releases/tag/usenix
https://zenodo.org/records/14765576
https://tamarin-prover.com/manual/master/book/002_installation.html
https://tamarin-prover.com/manual/master/book/002_installation.html


that evaluators update their kernel if possible. For hardware
that supports only SGX1, the kernel driver seems to not work,
so one must manually install the older driver according to the
instructions found at: https://github.com/intel/linux-
sgx-driver. For the remaining installation steps, we provide
a setup.sh script in the scripts directory of artifact (A2)
that performs the installation process. The installation pro-
cess takes around 90 minutes on our hardware and asks for
superuser privileges for certain installation steps. If an error
occurs, the script will be interrupted and you should investi-
gate the cause of the error. As aforementioned, we provide
a Docker image as an alternative to running the setup.sh
script. Once the Docker image is downloaded, or regenerated
from the Dockerfile, one can start an interactive session in the
image to obtain a test-ready environment.

Note that we provide extended installation and usage in-
structions for both artifacts in the README.md files found in
the respective artifacts’ directories.

A.3.2 Basic Test

For artifact (A1), calling tamarin-prover --version
should show no errors. If no errors are shown, then Tamarin
prover is installed correctly.

For artifact (A2), the script heap_verification.sh,
found in the scripts directory, performs an ODT verification
based on heap measurements. It configures and recompiles
the ODT client and server for heap verification and performs
an ODT verification. This process takes around ten minutes
to complete. If the heap verification was performed success-
fully, the expected last line of the output is: “ODT verification
success”.

We also provide a verification test based on stack
measurements. To perform it, we provide the script
stack_verification.sh that configures and recompiles the
ODT client and server for stack verification, disables ASLR,
and performs an ODT verification. This process takes around
ten minutes to complete. If the stack verification was per-
formed successfully, the expected last line of the output is:
“ODT verification success” (and an additional message that
ASLR was enabled again). The script asks for superuser priv-
ileges to disable and enable ASLR.

A.4 Evaluation workflow
A.4.1 Major Claims

We make the following major claims in the paper:
(C1): Our ODT protocol, shown in Figure 5, satisfies binding

integrity as described in Section 7.3. This is proven by
experiment (E1).

(C2): Our ODT server prototype incurs a slowdown of less
than 1 millisecond compared to a normal OpenSSL
server. The experiment (E2) is described in Section 6.3.2
and the results are reported in Table 2.

(C3): Our O-TEE implementation incurs a slowdown of
around 144 millisecond compared to a normal OpenSSL
client. The experiment (E3) is described in Section 6.3.2
and the results are reported in Table 3.

A.4.2 Experiments

(E1): [Tamarin proof] [15 human-minutes + 60 compute-
minutes + 1MB disk]:
Preparation: Install Tamarin prover as de-
scribed in the installation instructions found at
https://tamarin-prover.com/manual/master/
book/002_installation.html.
Execution: To explore the finished proof, launch
Tamarin in interactive mode by calling it with
tamarin-prover interactive . (the dot is part of
the command) in the tamarin_proof directory and
open the Tamarin Web interface at http://127.0.0.1:
3001.
To redo the whole proof, we provide a partially proven
ODT model in the partial-proof.spthy file, an or-
acle file myoracle.py, and a script prove.sh. The
partial-proof.spthy file contains a proof of the last
lemma that we construct by choosing the proof steps
ourselves. We do this manually because Tamarin’s auto-
prover has a tendency to get stuck in an infinite loop.
Tamarin can prove all other lemmas with the help of the
myoracle.py file. You can use the prove.sh script to
invoke Tamarin on the partial-proof.spthy file and
have it construct the complete proof proof2.spthy.
Upon successful completion of the script, Tamarin
should say that all lemmas are verified. You can
find the script output in proof2.log. The last 43
lines of proof2.log should roughly match the con-
tent of the expected_log_output.txt file. Note that
partial-proof.spthy and proof2.spthy are the out-
put of Tamarin’s proof process and are not designed for
direct inspection. You must use Tamarin’s web interface
to inspect them.
Results: In the Tamarin Web interface, you can ex-
plore any completed proof, e.g., proof.spthy or
proof2.spthy. After clicking on a proof, and after
around 30 minutes, the interface will show the names of
all successfully proven lemmas in green on the left side.
If all the lemmas are green, then this serves as proof for
claim (C1). Some lines of the last proof should be red
since the last lemma tests for the existence of a solution,
so a single complete trace is enough to prove the lemma.

(E2) and (E3): [Prototype performance evaluation] [10
human-minutes + 30 compute-minutes + 1 GB disk]:
While experiments E2 and E3 are described separately
in the paper, we bundle them together for convenience.
Preparation: If not yet complete, install the Intel SGX
SDK driver and run the setup.sh script found in the

https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx-driver
https://tamarin-prover.com/manual/master/book/002_installation.html
https://tamarin-prover.com/manual/master/book/002_installation.html
http://127.0.0.1:3001
http://127.0.0.1:3001


scripts/ directory. The script installs all the neces-
sary Intel SGX libraries and the ODT client and server.
You can also use the provided Docker image where the
setup.sh script is already complete. Also, make sure
that you do not have any CPU intensive processes run-
ning while the measurements are performed.
Execution: To perform the measurements, run the
runtime_measurement.sh script. This will configure
and recompile the ODT client and server for runtime
measurement. Afterwards, it will start various combi-
nations of ODT and unmodified OpenSSL clients and
servers, and perform six timing measurements in total
with 1000 samples each. During each measurement, the
script outputs the index of the current sample.
Results: To read the results, we provide the
analyze_results.py script. It formats the re-
sults in the form of Table 2 and Table 3 from the paper
to help evaluate claims (C2) and (C3). The raw results
are stored in the scripts/results/ directory.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


