
USENIX Security ’25 Artifact Appendix: "Shechi: A Secure Distributed
Computation Compiler Based on Multiparty Homomorphic Encryption"

Haris Smajlović*

University of Victoria
David Froelicher*

MIT
Ariya Shajii
Exaloop Inc.

Bonnie Berger
MIT

Hyunghoon Cho
Yale University

Ibrahim Numanagić
University of Victoria

A Artifact Appendix

A.1 Abstract
Shechi is a Pythonic framework for high-performance secure
distributed computing. Its artifact includes installation, setup,
and performance comparison against the other frameworks
for secure distributed computing. The comparison is done
through four sets of experiments: (i) micro-benchmarks, (ii)
basic workflows, (iii) complex workflows, (iv) scalability tests,
and (v) ablation study. In the following sections, we provide
detailed instructions on how to run each experiment.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There are no security nor ethical risks while executing this
artifact.

A.2.2 How to access

Access Shechi’s artifact at https://zenodo.org/records/
14868541.

A.2.3 Hardware dependencies

Original Shechi experiments were evaluated in a distributed
setup, each party on a different machine with 12-core Intel
i7-8700 CPUs (3.20GHz), 64 GB RAM, all connected via a
LAN network with 1 Gb/s bandwidth and 0.5 ms latency. For
easier artifact evaluation, we have enabled all experiments to
be run on a single machine, each party as a separate process
communicating over UNIX sockets. The online run, however,
is still possible.

Any machine with at least 64 GB RAM will suffice for
most experiments. The only experiments that require more
RAM (around 200 GB) are the scalability tests that involve
more than 3 parties to run on a single machine (as a rough
estimate, each party consumes around 20 GB of RAM for the
heaviest experiments).

*Co-first authors.

A.2.4 Software dependencies

Shechi runs only on Linux at the moment (any maintained dis-
tribution). For reference, our experiments were run on CentOS
Stream 9.

A.2.5 Benchmarks

We enabled all experiments to be executed on simulated
datasets (generated at random in each run and simulating
data similar to the lung cancer dataset from dbGaP (accession:
phs000716.v1.p1)).

A.3 Set-up
A.3.1 Installation

We suggest following the installation instructions in the
README.md in the artifact. The same instructions are provided
here for completeness.

Install Codon first: mkdir $HOME/.codon && curl \
-L https://github.com/exaloop/codon/releases/\
download/v0.17.0/codon-$(uname -s | awk \
'{print tolower($0)}')-$(uname -m).tar.gz | \
tar zxvf - -C $HOME/.codon --strip-components=1

And then install Sequre/Shechi: curl \
-L https://github.com/0xTCG/sequre/releases/\
download/v0.0.20-alpha/sequre-$(uname -s | \
awk '{print tolower($0)}')-$(uname \
-m).tar.gz | tar zxvf - -C \
$HOME/.codon/lib/codon/plugins

Finally, add an alias for the sequre command (make sure it
is a one-liner in the terminal):
alias sequre="find . -name 'sock.*' -exec rm {}
\; && CODON_DEBUG=lt $HOME/.codon/bin/codon run
--disable-opt="core-pythonic-list-addition-opt"
-plugin sequre"

A.3.2 Troubleshooting

Some Shechi experiments require Python. If Shechi fails to
automatically link this dependency, make sure to export path

https://zenodo.org/records/14868541
https://zenodo.org/records/14868541

to libpython.so shared library to CODON_PYTHON environ-
ment variable.

A.3.3 Basic Test

Run sequre examples/local_run.codon within the arti-
fact. This will run the simple multiplication example in a
simulated network of 3 parties. If the output contains the MHE
initialize log for each party (CP), then Shechi has been
successfully installed.

A.4 Evaluation workflow

Please note that all the commands below are also available in
USENIX25_README.md in the root directory of the artifact.

A.4.1 Major Claims

(C1): The performance of Shechi’s low-level operations is
on par with the state-of-the-art frameworks and libraries.
This is proven by the experiment (E1) described in Sec-
tion 10.2.1, the results of which are reported in Table
2.

(C2): Shechi is up to 80× faster than the state-of-the-art
homomorphic encryption frameworks when computing
basic workflows like L2 distance and matrix multiplica-
tion. This is proven by the experiment (E2) described in
Section 10.2.2, which is illustrated in Figure 7 (left).

(C3): Shechi is up to 15× faster than the state-of-the-art
frameworks when computing complex, large-scale work-
flows such as Kinship estimation based on Genotypes,
Principal Components Analysis, and Genome-Wisde As-
sociation Study. This is proven by the experiment (E3)
described in Section 10.2.3, which is illustrated in Figure
7 (right).

(C4): Shechi’s performance scales linearly, while the perfor-
mance of Secure Multiparty Computation-based frame-
work Sequre scales quadratically when increasing the
number of computing parties. This is proven by the ex-
periment (E4) described in Section 10.3, which is illus-
trated in Figure 8.

(C5): Shechi’s ablation study shows that Aggregation and
Encoding optimization is essential for good performance.
This is proven by the experiment (E5) described in Sec-
tion 10.4, which is illustrated in Figure 9 (right).

A.4.2 Experiments

(E1): [Micro-benchmarks] [5 human-minutes + 10 compute-
minutes + 5GB RAM]: experiment evaluates the run-
time of low-level operations in Shechi, Sequre, SEAL,
MP-SPDZ, and Lattigo and demonstrates that Shechi’s
low-level functionalities are on par with the other frame-
works.

Preparation: Make sure to run Shechi and Sequre ex-
periments from the root directory of the artifact.
Execution: Shechi and Sequre: sequre -release
scripts/invoke.codon run-benchmarks --local
--jit --lattiseq --mpc --mhe. SEAL: docker
run --rm --privileged hsmile/seal:bench.
MP-SPDZ: docker run --rm --privileged
hsmile/mpspdz:bench. Lattigo: docker run -it
--rm --privileged hsmile/lattigo:micro.
Results: Inspect the stdout for reported runtimes for
each benchmark and benchmarked procedure. The re-
sults should reflect the results reported in Table 2.

(E2): [Basic workflows] [5 human-minutes + 1.5 compute-
hour + 10GB RAM]: experiment evaluates the runtime
and network consumption of computing the L2 distance
and matrix multiplication in Shechi, Sequre, HEFac-
tory, EVA, MP-SPDZ, and Lattigo. It demonstrates that
Shechi is constantly faster than other HE-based frame-
works and consumes moderate bandwidth, as presented
in Figure 7 (left).
Preparation: Make sure to run Shechi and Sequre ex-
periments from the root directory of the artifact.
Execution: Shechi and Sequre: sequre -release
scripts/invoke.codon run-benchmarks --local
--jit --stdlib-builtin. HEFactory: docker run
--rm --privileged hsmile/hefactory:latest.
EVA: docker run --rm --privileged
hsmile/eva:bench. MP-SPDZ: docker run
--rm --privileged hsmile/mpspdz:bench.
Lattigo: docker run -it --rm --privileged
hsmile/lattigo:bench.
Results: Inspect the stdout for reported runtimes and
network statistics for each benchmark and benchmarked
procedure. Please note that HEFactory and EVA will
not provide any network statistics. This is because they
are executed in a centralized (non-distributed) fashion,
under the assumption that all parties will encrypt and
share their data beforehand. The results should reflect
the results illustrated in Figure 7 (left).

(E3): [Complex workflows] [5 human-minutes + 18
compute-hours + 60GB RAM]: experiment evaluates
the runtime and network consumption of computing
the Kinship estimation based on Genotype, Principal
Components Analysis, and Genome-Wisde Association
Study in Shechi, Sequre, and Lattigo. It demonstrates
that Shechi is constantly faster than other frameworks
and consumes less bandwidth, as presented in Figure 7
(right).
Preparation: Make sure to run Shechi and Sequre ex-
periments from the root directory of the artifact.
Execution: Shechi and Sequre: sequre -release
scripts/invoke.codon run-benchmarks --local
--jit --king --pca --gwas-without-norm. Lat-
tigo Kinship: docker run -it --rm --privileged

hsmile/lattigo:king. Lattigo GWAS (with
PCA): docker run -it --rm --privileged
hsmile/lattigo:gwas.
Results: Inspect the stdout for each benchmark’s
reported runtimes and network statistics at the end
of the benchmarked procedure. Inspect the results
directory to check the accuracy, or run python
scripts/accuracy.py in the root directory of the arti-
fact. Please note that the accuracy of Sequre KING may
be off target. This is due to the SMC overflow that can
happen for some randomly generated input. The results
should reflect the results illustrated in Figure 7 (right).

(E4): [Scalability] [5 human-minutes + 8 compute-hours +
200GB RAM]: experiment evaluates the runtime and
network consumption of computing the Principal Com-
ponents Analysis in three different network setups: 2,
4, and 8 computing parties. It demonstrates that Shechi
scales linearly as opposed to Sequre’s quadratic perfor-
mance drop when increasing the number of computing
parties, as presented in Figure 8.
Preparation: Navigate to the root directory of the arti-
fact.
Execution: 2-party setup: SEQURE_CP_COUNT=3
sequre -release scripts/invoke.codon
run-benchmarks --local --jit --pca. 4-party
setup: SEQURE_CP_COUNT=5 sequre -release
scripts/invoke.codon run-benchmarks --local
--jit --pca. 8-party setup: SEQURE_CP_COUNT=9
sequre -release scripts/invoke.codon
run-benchmarks --local --jit --pca.
Results: Inspect the stdout for reported runtimes and
network statistics. The results should reflect the results
illustrated in Figure 8.

(E5): [Ablations] [1 human-minute + 40 compute-minutes
+ 5GB disk]: experiment evaluates the small ablation
study for all possible optimization setups (with each of
the three main optimizations either turned on or off). It
demonstrates that the Aggregation and Encoding opti-
mization (enc in stdout) is detrimental to performance
and more effective than Maximizing efficient plaintext
operations (pri in stdout) and Minimizing multiplica-
tion redundancy (fac in stdout), as illustrated in Figure
9 (right).
Preparation: Navigate to the root directory of the arti-
fact.
Execution: Run sequre -release
scripts/invoke.codon run-benchmarks --local
--jit --ablation.
Results: Inspect the stdout for reported runtimes and
network statistics. The results should reflect the results
illustrated in Figure 9 (right).

A.5 Notes on Reusability
Shechi is a programming framework with Pythonic domain-
specific language and, as such, is not restricted to spe-
cific experiments. It is intended for building arbitrary
secure distributed applications, and we encourage the
users to inspect the examples in applications and
stdlib/sequre/stdlib directories for more examples of
Shechi. We also plan to publish a comprehensive documenta-
tion and tutorial for Shechi in the near future.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Troubleshooting
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

