
USENIX Security ’25 Artifact Appendix:
Attacker Control and Bug Prioritization

Guilhem Lacombe
Université Paris-Saclay, CEA, List, France

guilhem.lacombe.97@gmail.com

Sébastien Bardin
Université Paris-Saclay, CEA, List, France

sebastien.bardin@cea.fr

A Artifact Appendix

A.1 Abstract

As bug-finding methods improve, bug-fixing capabilities are
exceeded, resulting in an accumulation of potential vulner-
abilities. There is thus a need for efficient and precise bug
prioritization based on exploitability. In this work, we explore
the notion of control of an attacker over a vulnerability’s pa-
rameters, which is an often overlooked factor of exploitability.
We show that taint as well as straightforward qualitative and
quantitative notions of control are not enough to effectively
differentiate vulnerabilities. Instead, we propose to focus anal-
ysis on feasible value sets, which we call domains of control,
in order to better take into account threat models and expert
insight. Our new Shrink and Split algorithm efficiently ex-
tracts domains of control from path constraints obtained with
symbolic execution and renders them in an easily processed,
human-readable form. This in turn allows to automatically
compute more complex control metrics, such as weighted
Quantitative Control, which factors in the varying threat lev-
els of different values. Experiments show that our method
is both efficient and precise. In particular, it is the only one
able to distinguish between vulnerabilities such as cve-2019-
14192 and cve-2022-30552, while revealing a mistake in the
human evaluation of cve-2022-30790. The high degree of au-
tomation of our tool also brings us closer to a fully-automated
evaluation pipeline.

This artifact contains the necessary material to reproduce
all experimental results from the paper, including the source
code of our tool Colorstreams, our benchmarks and scripts to
run experiments and analyze results. In addition, we provide
tutorials and documentation for Colorstreams.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

This artifact does not pose any threat to the security and
privacy of evaluators.

A.2.2 How to access

The artifact is openly available on Zenodo: https://doi.
org/10.5281/zenodo.14699098.

A.2.3 Hardware dependencies

There are no specific hardware requirements but we recom-
mand having a CPU with at least 16 cores.

A.2.4 Software dependencies

Any OS that can run docker is suitable. For reproducing the
experiments without the docker image, any Linux distro com-
patible with the Nix package manager should be suitable,
although the artifact was only tested on Ubuntu.

Here is a list of Colorstreams’ main software dependencies,
which are automatically handled through Nix and thus do not
need to be installed manually:
Binsec: symbolic execution
Intel PIN: tracing
Z3: SMT solver
Bitwuzla: SMT solver
Q3B: SMT solver
popcon: model counting, includes d4
ganak: model counting
approxmc: model counting
gdb: debugging
Note that this list does not include sub-dependencies and the
(many) benchmark dependencies. For more details, check out
the artifact’s Nix files (nix/sources.json in particular).

A.2.5 Benchmarks

The experiments require two benchmarks. The first was as-
sembled by us and the second is based on the MAGMA
fuzzing benchmark (https://hexhive.epfl.ch/magma/).
The artifact contains both of them with documentation; no
manual setup is required.

https://doi.org/10.5281/zenodo.14699098
https://doi.org/10.5281/zenodo.14699098
https://hexhive.epfl.ch/magma/

A.3 Set-up

A.3.1 Installation

With docker: Download docker_image.tar.gz from Zenodo,
then run docker image load < docker_image.tar.gz.

To start a container, run docker run -it –rm col-
orstreams:usenix25. We recommend setting up a shared vol-
ume to easily transfer files from the container, such as fig-
ures. To do so, add -v <local_dir>:<mount_point> to the
container startup command (paths must be absolute). For
example, the full command could be docker run -it –rm -v
/home/aaa/bbb:/share colorstreams:usenix25. Alternatively,
docker cp can also be used, although it is less convenient.

Without docker: Given the amount of dependencies, we
only provide compilation through Nix. This should also help
to future-proof the building process. To install Nix, follow
the instructions at https://nixos.org/download. Then,
download colorstreams.tar.gz from Zenodo, decompress it
and open a shell in the artifact’s root directory. To build and
install colorstreams, run make and sudo make install. To build
the benchmark programs, run make xps_build.

A.3.2 Basic Test

To test the artifact, run make test (∼ 15 minutes). Then,
run make test_stats and make test_results. You should obtain
results similar to Listings 1 and 2 respectively.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Our Shrink and Split algorithm is more precise than the
state-of-the-art (Newsome et al.) and even competitive
against model counters.

(C2): Our Shrink and Split algorithm is faster than the state-
of-the-art (Newsome et al.) and more robust that model
counters.

(C3): Our prioritization approach using weighted quantita-
tive control is more precise than other scoring methods.

(C4): Our method can be used in realistic end-to-end priori-
tization scenarios.

A.4.2 Experiments

If you are using the docker image, please refer to Section
A.3.1 to start a container. Otherwise, open a shell inside the
artifact’s root directory.
(E1): Mainline experiments (10 human-minutes + 10

compute-hours): Analyses of both benchmarks for repro-
ducing the results from the paper, excluding appendices.
Execution: run make xps_less

Results: run make figs_less SAVEFIG=<directory>.
Figures will be saved to the directory specified with
SAVEFIG, which can be your shared directory if you are
using docker and set up one.
(C1): fig1.pdf (Figure 1), fig3.pdf (Figure 2)
(C2): tab4.txt (Listing 3), speedups.txt (Listing 4)
(C3): tab5_oob.txt (Listing 5), tab5_cfh.txt (Listing 6)
(C4): fig5.pdf (Figure 3)

(E2): Full experiments (10 human-minutes + 20 compute-
hour or 10 compute-hours if (E1) was run first): Analyses
of both benchmarks for reproducing all results from the
paper, including appendices.
Execution: run make xps_full
Results: run make figs_full SAVEFIG=<directory>.
Figures will be saved to the directory specified with
SAVEFIG, which can be your shared directory if you are
using docker and set up one.

You can find more details about the experiments in the
artifact’s readmes.

A.5 Notes on Reusability
The artifact includes tutorials and API documentation for
Colorstreams, as well as instructions for using and expand-
ing the benchmarks. Please refer to the readmes (in col-
orstreams.tar.gz).

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://nixos.org/download
https://secartifacts.github.io/usenixsec2025/

> make t e s t _ s t a t s
Execu ted i n s t r u c t i o n s and a n a l y s i s r u n t i m e (s) f o r each bug :

Bug A n a l y s i s Symbol ic I n s t r . T o t a l I n s t r . SE Runtime T o t a l Runtime
−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−−−−−−−− −−−−−−−−−−−−−−−
can Symbol ic P o l i c y <1> 2 2709 0 .0055747 14 .6759
can2 Symbol ic P o l i c y <1> 3 2830 0 .010097 17 .4844
ccopy Symbol ic P o l i c y <1> 6 27 0 .00972962 7 .04594
c f i Symbol ic P o l i c y <1> 12 2249 0 .0351627 7 .89045
c f i 2 Symbol ic P o l i c y <1> 5 2218 0 .0258272 7 .94325
copy Symbol ic P o l i c y <1> 2 22 0 .00235724 12 .9396
d i v Symbol ic P o l i c y <1> 3 23 0 .00308895 16 .2794
grub Symbol ic P o l i c y <1> 84 3868 0 .200363 107 .172
impflow Symbol ic P o l i c y <1> 3 40 0 .00736499 6 .63708
koobe Symbol ic P o l i c y <1> 12 4075 0 .0235684 26 .1484
mcopy Symbol ic P o l i c y <1> 3 23 0 .00285673 6 .39718
minesweeper1 Symbol ic P o l i c y <1> 278 68911 16 .3686 96 .9821
minesweeper2 Symbol ic P o l i c y <1> 254 107110 13 .5707 107 .404
mixdup Symbol ic P o l i c y <1> 13 33 0 .0125771 63 .9717
motex1 Symbol ic P o l i c y <1> 18 78 0 .0429707 30 .1603
motex2 Symbol ic P o l i c y <1> 15 1848 0 .0337915 15 .7375
mul Symbol ic P o l i c y <1> 3 23 0 .00335526 35 .8923
po pc n t Symbol ic P o l i c y <1> 39 59 0 .045434 7 .2513
s p r a y Symbol ic P o l i c y <1> 8 2224 0 .0165174 24 .4337
s p r a y 2 Symbol ic P o l i c y <1> 16 2248 3 .29333 80 .0886
s p r a y 3 Symbol ic P o l i c y <1> 20 89 3 .73511 58 .8148
sub Symbol ic P o l i c y <1> 3 24 0 .00478458 5 .81582
sum Symbol ic P o l i c y <1> 4 32 0 .00477386 43 .1932
u a f u b i Symbol ic P o l i c y <1> 11 2851 0 .738554 178 .45
u a f u b i 2 Symbol ic P o l i c y <1> 2 2843 0 .00483179 15 .5785

T o t a l SE r u n t i m e : 38.19642400741577
T o t a l o v e r a l l r u n t i m e : 978.8097233772278

Listing 1: Result of make test_stats

> make t e s t _ r e s u l t s
R e s u l t s compared t o ground t r u t h (d4 or ganak , when a v a i l a b l e) :

A lgo r i t hm True (TP /TN) Approx (<100%/ >100%) F a l s e (FP / FN) Timeout Unknown T o t a l Runtime
−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−−−−−−−−
T a i n t 24 /2 − 4 / 0 − − 0 s
WeakControl 24 /6 − 0 / 0 − − 0 s
S t r o n g C o n t r o l 7 /23 − 0 / 0 − − 1 s
d4 26 − − 4 − 42 s
ganak 26 − − 4 − 40 s
approxmc 23 1 / 0 − 4 2 59 s
Newsome 10 14 /2 − 0 4 8m54s
S&S (100 max s p l i t s) 23 1 / 2 − 0 4 47 s
S&SFB (100 max s p l i t s) 25 0 / 1 − 0 4 47 s

Listing 2: Result of make test_results

of

 p
ro

bl
em

s

Domain precision comparison between S&S and other algorithms
(1) S&S (100 max splits) (2) S&SFB (100 max splits)

Taint WC SC Newsome

18
6

16
2

17
0

13
5

65

89 81

10
5

0 0 0 11

Taint WC SC Newsome

18
6

16
2

17
0

14
0

65

89 81

10
5

0 0 0 6

S&S better Equal S&S worse no control

Figure 1: fig1.pdf

of

 p
ro

bl
em

s

QC precision comparison between S&S and other algorithms
(1) S&S (100 max splits) (2) S&SFB (100 max splits)

d4 ganak approxmc

5 6 12

23
7

23
6

22
6

9 9 90 0 4

d4 ganak approxmc

5 6 15

24
1

24
0

22
7

5 5 50 0 4

S&S better Equal S&S worse Not comparable

Figure 2: fig3.pdf

R e s u l t s compared t o ground t r u t h (d4 or ganak , when a v a i l a b l e) :

A lgo r i t hm True (TP /TN) Approx (<100%/ >100%) F a l s e (FP / FN) Timeout Unknown T o t a l Runtime
−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−−−−−−−−
T a i n t 162 /65 − 24 /0 − − 0 s
WeakControl 162 /89 − 0 / 0 − − 3 s
S t r o n g C o n t r o l 81 /170 − 0 / 0 − − 46 s
d4 246 − − 5 − 35m35s
ganak 245 − − 6 − 32m49s
approxmc 228 18 /0 − 1 4 15m08s
Newsome 105 137 /4 − 1 5 2h08m48s
S&S (10 max s p l i t s) 235 6 / 5 − 0 5 10m56s
S&S (50 max s p l i t s) 237 4 / 5 − 0 5 11m12s
S&S (100 max s p l i t s) 237 4 / 5 − 0 5 11m52s
S&S (500 max s p l i t s) 237 4 / 5 − 0 5 15m19s
S&S (1000 max s p l i t s) 237 4 / 5 − 0 5 19m33s
S&SFB (10 max s p l i t s) 238 7 / 1 − 0 5 10m26s
S&SFB (50 max s p l i t s) 240 5 / 1 − 0 5 10m45s
S&SFB (100 max s p l i t s) 241 4 / 1 − 0 5 10m55s
S&SFB (500 max s p l i t s) 241 4 / 1 − 0 5 13m05s
S&SFB (1000 max s p l i t s) 241 4 / 1 − 0 5 15m27s

Listing 3: tab4.txt

Runtime a v e r a g e s (5% tr immed) :
Newsome : 3 0 . 8 (2 2 . 2)
S&S (10 max s p l i t s) : 2 . 6 2 (0 . 5 0 5)
S&S (50 max s p l i t s) : 2 . 6 8 (0 . 6 1 1)
S&S (100 max s p l i t s) : 2 . 8 4 (0 . 6 4)
S&S (500 max s p l i t s) : 3 . 6 7 (0 . 6 3 7)
S&S (1000 max s p l i t s) : 4 . 6 7 (0 . 6 2 2)
S&SFB (10 max s p l i t s) : 2 . 5 (0 . 4 9 1)
S&SFB (50 max s p l i t s) : 2 . 5 7 (0 . 5 6 4)
S&SFB (100 max s p l i t s) : 2 . 6 1 (0 . 5 5 8)
S&SFB (500 max s p l i t s) : 3 . 1 3 (0 . 5 7 4)
S&SFB (1000 max s p l i t s) : 3 . 7 (0 . 5 6 9)

Speedup a v e r a g e s (5% tr immed) :
S&S (10 max s p l i t s) : 7 9 . 4 (7 1 . 5)
S&S (50 max s p l i t s) : 80 (7 1 . 2)
S&S (100 max s p l i t s) : 8 0 . 9 (7 2 . 9)
S&S (500 max s p l i t s) : 8 3 . 1 (7 3 . 2)
S&S (1000 max s p l i t s) : 8 2 . 8 (7 3 . 4)
S&SFB (10 max s p l i t s) : 8 7 . 2 (7 7)
S&SFB (50 max s p l i t s) : 8 4 . 7 (7 5 . 4)
S&SFB (100 max s p l i t s) : 8 8 . 9 (7 7 . 5)
S&SFB (500 max s p l i t s) : 8 4 . 9 (7 4 . 9)
S&SFB (1000 max s p l i t s) : 8 4 . 8 (7 5 . 3)

Listing 4: speedups.txt

B a s i c s c o r e s based on c o u n t s and domains :

Bug Sink S i z e QC wQC
−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−− −−−−−− −−−−−− −−−−−−−−
motex2 o f _ w s i z e <1> 64 0 .0832 0 .0837
motex1 o f _ w s i z e <1> 64 0 .0832 0
h e a r t b l e e d p a y l o a d _ s i z e <11> 32 0 . 5 0 . 5
cve −2023 −37837 r e a d _ o f f <0> 16 1 1
cve −2022 −30790 _2 of_wof f2 <5> 64 0 .249 0 .037
cve −2022 −30790 of_wof f <7> 64 0 .0248 0 .0066
cve −2022 −30790 o f _ w s i z e <5> 64 0 .219 8 . 5 9 e −08
cve −2022 −30552 of_wof f <3> 64 0 .0248 0 .0066
cve −2022 −30552 o f _ w s i z e <1> 64 0 .219 8 . 5 9 e −08
cve −2021 −3246 o f _ s i z e <1> 64 0 .275 0 .221
cve −2019 −14202 o f _ w s i z e <1> 32 0 .499 0 .499
cve −2019 −14192 o f _ w s i z e <1> 32 0 .499 0 .499

Listing 5: tab5_oob.txt

Note: to obtain the scores from the paper, multiply the scores in the table by the bit size of the sink. For vulnerabilities with two
parameters, add both scores together.

CFH c a p a b i l i t y s c o r e s :

Bug ID Type QC Score wQC Score
−−−−−−−−−−−−−−−−−− −−−− −−−−−− −−−−−−−−−− −−−−−−−−−−−
cve −2020 −14393. c f h 0 Jump 0 .996 1
cve −2023 −43338. c f h 0 C a l l 1 . 5 3 e −05 1
cve −2021 −26567. c f h 0 Ret 0 .969 0
cve −2024 −41881. c f h 0 Ret 0 .939 0
cve −2024 −43700. c f h 0 Ret 0 .776 0

Listing 6: tab5_cfh.txt

0.0 0.2 0.4 0.6

SQL018
XML002
XML001
XML006
TIF001

SSL001
TIF008_2

TIF008
TIF002

TIF002_2
SSLNEW002
SSLNEW004
SSLNEW006
SSLNEW005

SSL002
SSLNEW003
SSLNEW001

Memory Write Bugs

Base
Size
Data

0.0 0.2 0.4 0.6

PNG007
PDF018
PDF010
PDF004

TIF002_2
TIF002

XML012
SSL009
TIF001

TIF008_2
SSL001
TIF008

PDF003
PHP011
PDF019

Memory Read Bugs

Base
Size

OOB Capability Scores

Score

Figure 3: fig5.pdf

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

