
USENIX Security ’25 Artifact Appendix: Chimera: Creating Digitally
Signed Fake Photos by Fooling Image Recapture and Deepfake Detectors

Seongbin Park*, Alexander Vilesov*, Jinghui Zhang, Hossein Khalili,
Yuan Tian, Achuta Kadambi, Nader Sehatbakhsh

University of California, Los Angeles
*{parkseongbin,vilesov}@ucla.edu

A Artifact Appendix

A.1 Abstract
This paper introduces Chimera, an end-to-end attack strategy
that crafts cryptographically signed fake images capable of de-
ceiving both deepfake and image recapture detectors. Current
adversarial and generative models fail to effectively deceive
both detector types or lack generalization across different se-
tups; Chimera addresses this gap by using a hardware-aware
adversarial compensator to craft fake images that successfully
bypass state-of-the-art detection mechanisms. This artifact
demonstrates the effectiveness of Chimera fooling both types
of detectors with a high success rate while having high visual
quality (compared to the original real image). Our success-
ful end-to-end attack on state-of-the-art detectors shows an
urgent need for more robust detection strategies.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Since our attack does not target anything other than the target
deepfake and recapture detectors (which are provided), there
is no significant risk to the evaluators.

A.2.2 How to access

The complete artifact, including source code, pretrained mod-
els, and instructions, is available on Zenodo.

A.2.3 Hardware dependencies

None. However, using GPUs will speed up testing.

A.2.4 Software dependencies

The artifact should be evaluated in a conda environment. A
complete list of software dependencies is provided in the
environment.yml file, which includes PyTorch and other

*These authors contributed equally to this work

required dependencies. Additionally, the dataset and model
weights used in the experiments are linked in the GitHub
repository and must be downloaded.

A.2.5 Benchmarks

Pretrained models based on the datasets are provided in the
conda environment. There is no need to download/access
additional datasets.

A.3 Set-up
Follow these steps to prepare the environment for evaluation:

1. Set up the Conda Environment: Create and ac-
tivate the conda environment using the provided
environment.yml:

conda env create -f environment.yml
conda activate chimera

2. Download the Dataset and Models: The dataset is
hosted on Zenodo. Please download it from the provided
link (see the README). The dataset can be unzipped
anywhere in the main directory; for the appropriate loca-
tion of the models, refer to the next step.

3. Configure Deepfake Detection:

• Edit deepfake-detection/dataset_paths.py
to specify the correct paths to your dataset.

• Move the following model weights into the
deepfake-detection/pretrained_weights
directory:

– fatformer_4class_ckpt.pth

– fc_weights.pth

– ViT-L-14.pt

4. Configure Recapture Detection: Place the recapture
detection model files into a directory of your choice. The
paths to these models will be specified via command-line
arguments during testing.

https://zenodo.org/records/14736478?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImQzOGExZGFmLTY2ZmYtNGNmYS05YTI1LWI5ZjA2N2E4N2I4NiIsImRhdGEiOnt9LCJyYW5kb20iOiJmMDUwMDg2NzBkYzBiMTJiYTM0MDVmM2ExODFjN2RjNSJ9.63km8trNlAK4djWk4r7nHbOYfbjPM9wWiNa-0RNmv1dOKuz-dvzb1WFAtxh2E_6w9lgLEa4Ltq5EHX22557dlQ


A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Chimera can successfully bypass otherwise accurate
recaptured image detectors. This is proven by the ex-
periment (E1) described in Section 6.2 whose results are
reported in Table 1.

(C2): Chimera can successfully bypass otherwise accurate
deepfake detectors. This is proven by the experiment
(E2) described in Section 6.3 whose results are reported
in Table 4.

A.4.2 Experiments

(E1): [Recapture Detection Experiment] [10 human-minutes
+ 10 compute-minutes]
Preparation: No further preparation must be done from
the steps outlined in A.3.
Execution: In the recapture-detection directory,
execute the following command:
python main.py \

--test \
--test_path TEST_PATH \
--config CONFIG \
--test_raw_dirnames RAW_DIRNAMES \
--test_recap_dirnames RECAP_DIRNAMES

where TEST_PATH is the path to the model and CONFIG
is the path to the configuration file. Ensure that the con-
figuration file matches the model being tested.
Specify the raw image directory with RAW_DIRNAMES
and the recaptured image directory with
RECAP_DIRNAMES. In the tar file provided, the
raw images are in stylegan2_orig, benign recaptured
images in recap_mac, and adversarial recaptured
images in attack_mac.
Results: Upon completion, the script should output the
accuracy of the models for the specified datasets.

(E2): [Deepfake Detection Experiment] [2 human-minutes +
5 compute-minutes]
Preparation: No further preparation must be done from
the steps outlined in A.3.
Execution: In the deepfake-detection directory, run
the test script:

./test.sh

This script runs all deepfake detection tests sequentially.
Results: The script saves the evaluation results (includ-
ing detection metrics and success rate analyses) in the
deepfake-detection/results directory.

A.5 Notes on Reusability
Though our method is generalizable to any hardware setup,
the adversarial generative model must be trained specifically
for each setup.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


