ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: GeCos Replacing Experts:
Generalizable and Comprehensible Industrial Intrusion Detection

KX
KX

Konrad Wolsing™* Eric Wagner

*Fraunhofer FKIE

A Artifact Appendix

A.1 Abstract

Protecting Industrial Control Systems (ICSs) against cyber-
attacks is crucial to counter escalating threats to critical in-
frastructure. To this end, Industrial Intrusion Detection Sys-
tems (IIDSs) provide an easily retrofittable approach to un-
cover attacks quickly and before they can cause significant
damage. Current research focuses either on maximizing au-
tomation, usually through heavy use of machine learning, or
on expert systems that rely on detailed knowledge of the mon-
itored systems. While the former hinders the interpretability
of alarms, the latter is impractical in real deployments due to
excessive manual work for each individual deployment.

To bridge the gap between maximizing automation and
leveraging expert knowledge, we introduce GeCo, a novel
IIDS based on automatically derived comprehensible models
of benign system behavior. GeCo leverages state-space mod-
els mined from historical process data to minimize manual
effort for operators while maintaining high detection perfor-
mance and generalizability across diverse industrial domains.
Our evaluation against state-of-the-art [IDSs and datasets
demonstrates GeCo’s superior performance while remain-
ing comprehensible and performing on par with rule-based
IIDS based on the manual effort of experts.

This artifact provides the implementation of GeCo and
describes how to reproduce our main results regarding the
detection performance of GeCo, as well as our comparison to
related work from Section 6.1 of the publication.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our artifact does not contain content that threatens security
or privacy as we publish the code and the evaluation tools
for a defensive intrusion detection system (GeCo). GeCo is
evaluated purely on datasets of ICS process data and thus our
evaluation process does not require malware. Due to privacy
concerns, we do not make the results of our user study from
Sec. 6.2.2 available.

Luisa Lux ™+

Klaus Wehrle* Martin Henze®"

fRWTH Aachen University

A.2.2 How to access

Our artifact is available at https://zenodo.org/records/
15120036. Besides the files serving as an online appendix
for our publication, code-and-results.zip contains the files
for this artifact. It includes the code of the proposed IIDS
(GeCo) and the configuration files used for its evaluation. A
permanently maintained version of GeCo is available at the
IPAL repository https://github.com/fkie-cad/ipal_
ids_framework/tree/master/ids/geco, yet it is not re-
quired for reproducing the results from our publication.

A.2.3 Hardware dependencies

GeCo does not require specific hardware architectures. Still,
the hardware requirements (CPU cores and memory) depend
on the dataset and impact the runtime performance. To use and
evaluate GeCo with pre-trained models, a single CPU core
with a minimum of about 2Gb RAM has proven sufficient.
However, to retrain the models of GeCo, more memory must
and more CPU cores should be spared.

The smaller datasets (BATADAL and TEP) can be trained
in under one hour with 8 CPU cores and at least 2Gb of
memory. The training of the SWaT, WADI, and HAI models
is much more demanding (cf. Section 6.3 and Table 5 in our
paper). Regarding memory, they require at least 16GB for
SWaT and HAI and 64GB for WADI to load the datasets. The
number of CPU cores impacts the training time. Note that
depending on the chosen number of CPU cores, additional
memory is required to enable parallel processing.

A.2.4 Software dependencies

GeCo and the evaluation tools are a collection of Python
scripts that have been tested with Python 3.12. Other versions
are expected to work as well. The implementation has been
tested on Linux and macOS operating systems.

The implementation of GeCo is based on the open-source
IPAL IDS framework' and uses its provided datasets and
evaluation tools. Except for the datasets (cf. the following
A.2.5), all necessary software is provided within the artifact.

"PAL - https://github.com/fkie-cad/ipal


https://zenodo.org/records/15120036
https://zenodo.org/records/15120036
https://github.com/fkie-cad/ipal_ids_framework/tree/master/ids/geco
https://github.com/fkie-cad/ipal_ids_framework/tree/master/ids/geco
https://github.com/fkie-cad/ipal

List of used software versions:

* https://github.com/fkie-cad/ipal_ids_
framework v1.5.2

e https://github.com/fkie-cad/ipal_evaluate
v1.2.9

e https://github.com/fkie-cad/ipal_datasets
v1.3.7

A.2.5 Benchmarks

Note that we cannot publicly provide the dataset files
(datasets/) for legal reasons. Still, the datasets can be ob-
tained by the publishers and transcribed into the IPAL format
following the instructions here (cf. datasets/README.md).
These steps are necessary to reproduce any of our results:

1. Clone the https://github.com/fkie-cad/ipal_
datasets repository.

2. Install the dependencies listed in the requirements.txt file.

3. Select a dataset, e.g., SWaT, for this example.

4. Obtain the raw dataset from the publishers.
Links to the dataset publishers are listed in the
ipal_datasets/README.md table. The precise version and
files used in our paper are listed below.

5. Place the dataset files in the respective folder. For example,
ipal_datasets/SWaT/raw/[dataset files].

6. Execute the transcribe.py/sh script for the chosen dataset.

7. Copy the generated files and replace this artifact’s place-
holders attack.json and ipal/* files.

List of used files and dataset versions:

¢ SWaT: Download all three XLSX files from the SWaT. Al
& A2_Dec 2015/Physical folder.

e WADI: Download all CSV files from the WADI.A2_19 Nov
2019 folder.

* HAIL: Download all *csv.gz from the https://github.

com/icsdataset/hai/tree/master/hai-21.03 reposi-
tory.
¢ BATADAL: Download all three CSV files from https://
www.batadal.net/data.html (BATADAL_dataset04.csv,
BATADAL_dataset03.csv, and BATADAL_test_dataset.csv).
e TEP: Download all files from the https://github.com/
mikeliturbe/pasad/tree/master/data repository.

A.2.6 Description of files and content

The artifact consists of various files and folders, some relevant
for reproducing our results while others serve as additional
material for our paper. In the following, we describe the struc-
ture of the artifact:

* code/: This folder contains the software necessary for con-
ducting our evaluation, based on the IPAL IDS Framework
(cf. A.2.4), and the implementation of GeCo (code/ipal-ids-
[framework/ids/GeCo).

* config/: For each dataset, the *.json files define the hyper-

parameters for GeCo. Based on these configurations and

the training data, GeCo learns a model stored within the
respective *.model files.

datasets/: We evaluated GeCo on five datasets stored in this

folder (cf. A.2.5 on how to prepare the datasets).

knowledge-based/: This folder contains the artifact to re-

produce our results of Sec. 6.1.3.

* output/: Once the datasets are labeled by GeCo, we store
the IDSs output here.

* related-work/: This folder contains the alerts of related
work (SIMPLE, TABOR, Invariant, Seq2SeqNN, PASAD),
which we use as a comparison in Table 2. These results
were reproduced with the help of the IPAL IDS framework.
The *.state.gz files contain the labeled datasets for each
IDS, and the * json files the respective metrics.

* results: Based on the labeled dataset from output/, the * json

files contain the calculated performance metrics for GeCo

and the *pdf files depict the alerts of GeCo (black) com-
pared to the dataset’s attacks (red).

videos/: This folder contains renderings of the dependency

graph from Figure 7a for all datasets, which are comple-

mentary material for our publication.

A.3 Set-up
A.3.1 Preparation

Please prepare the dataset files as described in A.2.5. For each
dataset, all the dummy files in the respective dataset folders
(datasets/SWaT, WADI, HAI, BATADAL/*) have to be replaced.

A.3.2 Installation

Execute the following commands to install the required soft-
ware for GeCo:

python3 -m venv venv

source ./venv/bin/activate

pip3 install igraph==0.10.4

pip3 install code/ipal —ids—-framework/
pip3 install code/ipal-evaluate/

More information can be found in the README.md file.

A.3.3 Basic Test

Execute the following command to apply GeCo to one of the
selected datasets.

./run—ids .py {SWaT,WADI, HAI,BATADAL, TEP}

To test whether the installation was successful, select “n”
in the run-ids.py script to skip the sometimes long training
process. For testing the training, use one of the datasets for
which training is fast, such as BATADAL or TEP.


https://github.com/fkie-cad/ipal_ids_framework
https://github.com/fkie-cad/ipal_ids_framework
https://github.com/fkie-cad/ipal_evaluate
https://github.com/fkie-cad/ipal_datasets
https://github.com/fkie-cad/ipal_datasets
https://github.com/fkie-cad/ipal_datasets
https://github.com/icsdataset/hai/tree/master/hai-21.03
https://github.com/icsdataset/hai/tree/master/hai-21.03
https://www.batadal.net/data.html
https://www.batadal.net/data.html
https://github.com/mikeliturbe/pasad/tree/master/data
https://github.com/mikeliturbe/pasad/tree/master/data

A.4 Evaluation workflow
A4.1 Major Claims

(C1): GeCo shows competitive detection performance,
which is often better than related work. This is proven
by the evaluation (E1) described in Section 6.1.1, whose
results are reported in Table 2, Table 6, and Figure 12.

(C2): GeCo generalizes well to a new domain of the chemical
Tennessee Eastman Process (TEP). This claim is sup-
ported by the evaluation (E2) described in Section 6.1.2,
whose results are reported in Figure 6.

(C3): GeCo yields a detection performance that is on par
with labor-intensively created knowledge-based IIDSs.
This claim is assessed in evaluation (E3) described in
Section 6.1.3 and Table 3.

(C4): GeCo’s alerts are comprehensible as they closely cor-
relate to the ICS’s underlying physical process. This
experiment was designed and conducted in Section 6.2.1
and the results are shown in Figure 7 and Figure 8.

A.4.2 Experiments

How to, preparation, and execution

To conduct the evaluation, execute the run-ids.py [dataset]
script, providing one of the five datasets (SWaT, WADI, HAI,
BATADAL, and TEP) as the argument one by one. If the
goal is to reproduce our results, select “n” at the beginning of
the run-ids.sh script. That way, GeCo uses the provided pre-
trained models from the config/ folder. These steps suffice to
reproduce the results of our experiments (E1-E4). [5 human-
minutes, 10 compute-minutes, 1GB disk space]

Optionally, the detection models of GeCo can also be
retrained on the training data instead of using the pre-
trained models. To this end, select “y” at the beginning of
the run-ids.sh script. Since the training phase can be ex-
tensive depending on the dataset, it is advisable to lever-
age an appropriate amount of CPU cores for paralleliza-
tion (cf. Section6.3). The number of cores for training
can be configured in the configuration files under con-
fig/{SWaT WADI,HAL,BATADAL,TEP).json with the cpus op-
tion (default is 7). We recommend training the BATADAL or
TEP model first, as they are the least computationally demand-
ing datasets [5 human-minutes, 1-2 compute-hours, 1GB disk
space]. SWaT, HAI [5 human-minutes, 24 compute-hours]
and WADI [5 human-minutes, 1+ compute-month] demand
significantly more time for training even with 64 CPU cores
and 236GB of RAM. Yet, this step is not mandatory for the
success of the following experiments.

Results

(E1): Detection Performance [10 human-minutes]: GeCo’s
detection performance is measured by comparing its
alerts to the datasets labels. The results can be found
in the results/ folder for each dataset, where the *.json
files list different detection performance metrics and the

* pdf files visualize the alerts in relation to the attacks.
To visualize and aggregate these results, execute the
respective scripts (table-2.py, fig-12.py, and table-6.py)
to obtain the results shown in our publication. These
scripts either render an image or generate the LaTeX
code for the respective figures and tables.

(E2): Generalizability [5 human-minutes]: We show that
GeCo successfully transfers to a new industrial domain
by applying GeCo to the TEP dataset. The detection
performance stated in Section 6.1.2 (96.0 in F1 and 98.0
in eTaF1) can be validated with the results/TEPjson file.
Additionally, the fig-6.py script renders GeCo’s alerts
compared to the PASAD IIDS.

(E3): Expert Knowledge-based IIDS [5 human-minutes]: We
implemented an IIDS that leverages a collection of In-
variants as listed in Table 8. Execute the following script
located under knowledge-based/run.sh to apply this IIDS
to the SWaT dataset. The results are stored in the out-
put.json and output.pdf files. To reproduce Table 3 of
our paper, execute the fable-3.py script.

(E4): Alerts Localization and Understandability [5 human-
minutes]: We analyze GeCo’s detection model to infer
which process values are responsible for the alerts by an-
alyzing the dependency between the learned state-space
models by means of a dependency graph in Figure 7a.
The dependency graph can be recreated with the respec-
tive fig-7a.py script. Note that the graph is arranged
differently with each execution of the script. Lastly, the
fig-8.py script generates the results for Figure 8.

A.5 Notes on Reusability

If the goal is to examine GeCo’s detection performance in
more detail on the datasets evaluated so far, please refer to the
files in the output/ directory, as they contain the raw output of
GeCo for each dataset. For other activities, such as applying
GeCo to different datasets, we recommend working with the
implementation provided by the IPAL IDS framework'. To
this end, we direct the reader to the tutorial and documen-
tation about IPAL’. For guidance on how to configure the
hyperparameters of GeCo, please refer to Section 7.1 of our
publication.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

2IPAL Tutorial — https://github.com/fkie-cad/IPAL/blob/main/
tutorial/Tutorial.md


https://secartifacts.github.io/usenixsec2025/
https://github.com/fkie-cad/IPAL/blob/main/tutorial/Tutorial.md
https://github.com/fkie-cad/IPAL/blob/main/tutorial/Tutorial.md

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks
	Description of files and content

	Set-up
	Preparation
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


