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A Artifact Appendix

A.1 Abstract
The source code for our two enhanced PSU (ePSU) pro-
tocols in balanced and unbalanced settings, is available
at https://github.com/real-world-cryptography/ePSU. We im-
plement the hashing, pnMCRG, and one-time pad routines
for our ePSU protocols. Our pnMCRG consists of two steps:
pMCRG and nECRG. Additionally, pMCRG can be further
divided into three steps: bOPRF + OKVS + pECRG in the
balanced setting and bOPRF + FHE + pECRG in the unbal-
anced setting. All artifact evaluation results are provided in
Section 8 of the paper and the Appendix.

A.2 Description & Requirements
The source code for our balanced and unbalanced ePSU pro-
tocols can be described as follows.

Balanced Setting. The code of our balanced ePSU is
located in the “balanced_ePSU/” folder. In this folder,
“ePSU/balanced_epsu.cpp” contains the complete implemen-
tation of ePSU, and “pnMCRG/pnMCRG.cpp” implements
pnMCRG (Figure 18: pnMCRG from pMCRG and nECRG),
including key components pMCRG (Figure 13: pMCRG
from bOPRF, OKVS, and pECRG), pECRG (Figure 11:
DDH-based pECRG), and nECRG (Figure 16: nECRG from
ssPEQT and ROT). The “test/” folder contains test pro-
grams for balanced ePSU, pnMCRG, pMCRG, pECRG, and
nECRG.

Unbalanced Setting. The code of our unbalanced ePSU is
located in the “unbalanced_ePSU/” folder. In the “MCRG/”
folder, we reuse part of APSU (https://github.com/real-
world-cryptography/APSU) to implement steps 1–7
from Figure 14 (MCRG based on bOPRF and FHE).
“pECRG_nECRG_OTP/pecrg_necrg_otp/pecrg_necrg_otp.cpp”
implements the remaining parts of our unbalanced ePSU.
“pECRG_nECRG_OTP/pnecrg/pnECRG.cpp” implements

the key components pECRG and nECRG. The “test/” folder
contains test programs for pECRG (step 8 in Figure 14)
and nECRG (Figure 16: nECRG from ssPEQT and ROT).
Additionally, “test.py” is a script to automate the MCRG and
pECRG_nECRG_OTP processes.

We run our experiments on a single Intel Core i7-13700
CPU @ 5.20GHz with 32 threads and 64GB of RAM, running
Ubuntu 22.04.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

We have open-sourced the implementation of our two
enhanced PSU protocols at https://github.com/real-world-
cryptography/ePSU. Besides, our artifact is available at
https://doi.org/10.5281/zenodo.15128481.

A.2.3 Hardware dependencies

Our ePSU currently supports Ubuntu 22.04.

A.2.4 Software dependencies

Our ePSU requires the installation of G++ (version 11.4.0)
and Python (version 3.10.12).

We leverage the constructions in [KKRT16, RS21, RR22,
FV12] to implement bOPRF, OKVS, ssPEQT, and FHE (the
building block of balanced/unbalanced pnMCRG) and use the
code from the Vole-PSI library [Vol], the SEAL library [SEA],
and the APSI/APSU library [APS, PSU]. We use an array
of optimization techniques of FHE as [CLR17, CHLR18,
CMdG+21, TCLZ23], such as batching (SIMD), windowing,
and partitioning to significantly reduce the depth of the homo-
morphic circuit. As for ROT (the building block of nECRG)
and DDH-based pECRG, we follow the libOTe library [lib]
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and the OpenSSL library [Ope]. Our code supports multi-
threading parallelism following the Vole-PSI library [Vol]
and the OpenMP library [MP].

A.2.5 Benchmarks

We set the computational security parameter κ = 128, the
statistical security parameter λ = 40 and use γ = 3 hash func-
tions to insert sets X and Y into the cuckoo hash table and
simple hash table, respectively. The item length is 64-bit fol-
lowing [LG23, DCZB24].

A.3 Set-up
A.3.1 Installation

Instructions for installing the required dependen-
cies are given in https://github.com/real-world-
cryptography/ePSU/blob/main/README.md. This code is
conducted on Ubuntu 22.04, with G++ 11.4.0 and CMake
3.22.1.

A.3.2 Basic Test

ePSU Test. To run our balanced ePSU, evaluators can run the
command in the balanced_ePSU/build directory. For example,
when both set sizes are |X | = |Y | = 212 and thread number
is 1, the command is ./test_balanced_epsu -nn 12 -nt
1 -r 0 & ./test_balanced_epsu -nn 12 -nt 1 -r 1,
where nn∈ {10,12,14,16,18,20,22} denotes the logarithm
of set size {210,212, 214, 216, 218, 220,222}; nt denotes the
number of threads{1,2,4,8}; r denotes the index of involved
parties (only 0 or 1).

Sub-protocols of ePSU test: run the commands in the bal-
anced_ePSU/build directory. The symbols nn, nt, and r re-
main consistent with those in ePSU.

• pnMCRG Test Command.
./test_pnmcrg -nn 12 -nt 1 -r 0 &
./test_pnmcrg -nn 12 -nt 1 -r 1

• pMCRG Test Command.
./test_pmcrg -nn 12 -nt 1 -r 0 &
./test_pmcrg -nn 12 -nt 1 -r 1

• pECRG Test Command.
./test_pecrg -nn 12 -nt 1 -r 0 &
./test_pecrg -nn 12 -nt 1 -r 1

• nECRG Test Command.
./test_necrg -nn 12 -nt 1 -r 0 &
./test_necrg -nn 12 -nt 1 -r 1

eUPSU Test. To run our unbalanced ePSU, evaluators can
run the command in the ePSU/unbalanced_ePSU directory.
Here we fix the small set size |X | = 210. For example,
when the large set size |Y | = 212 and thread number is

1, the command is python3 test.py -pecrg_necrg_otp
-cn 1 -nt 1 -nn 12, where nn∈ {12,14,16,18,20,22} de-
notes the logarithm of large set size {212, 214, 216, 218,
220,222}; nt denotes the number of threads {1,2,4,8}; cn
denotes the column number of the matrix (if the large set size
is less than 220, set to 1; otherwise set to 2).

Sub-protocols of eUPSU test: run the commands in the
ePSU/unbalanced_ePSU directory. The symbols are the same
as above.

• pECRG Test Command.
python3 test.py -pecrg -cn 1 -nt 1 -nn 12

• pnECRG Test Command.
python3 test.py -pnecrg -cn 1 -nt 1 -nn 12

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We implement our enhanced PSU in the balanced set-
ting (ePSU), and its subprotocols, including pnMCRG,
pMCRG, pECRG, and nECRG.

(C2): We implement our enhanced PSU in the unbalanced
setting (eUPSU), and its subprotocols, including pnM-
CRG and pMCRG.

A.4.2 Experiments

(E1): [ePSU performance] : This experiment benchmarks
the communication and runtime of ePSU with 10Gbps
bandwidth, 0.4ms RTT; 100Mbps, 10Mbps and 1Mbps
bandwidth, 160ms RTT.
How to: Open a terminal, and execute the follow-
ing command: tc qdisc add dev lo root netem
delay 0.2ms rate 10Gbit to config the local net-
work as 10Gbit bandwidth with 0.4ms RTT. Evalua-
tors can adjust the network settings using different pa-
rameters as needed, such as 100Mbps, 10Mbps and
1Mbps bandwidth, 160ms RTT. Then run the com-
mand ./test_balanced_epsu -nn 20 -nt 1 -r 0
& ./test_balanced_epsu -nn 20 -nt 1 -r 1 in
the balanced_ePSU/build directory. The command will
run balanced_ePSU with set size |X | = |Y | = 220, and
print the information of communication and running
time. Evaluators can set nn to test balanced_ePSU un-
der different set sizes, nt to test balanced_ePSU with
different numbers of threads.
Results: For each run of balanced_ePSU, this experi-
ment print information as follows:

• Comm cost = 277.402 MB, indicating the commu-
nication cost of the balanced_ePSU is 277.402 MB.

• end 78144.0 78143.895 **********,
indicating the running time of the balanced_ePSU
is 78144 ms.
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• Balanced_ePSU functionality test pass!
And union size is: 1048577, indicating the
Balanced_ePSU functionality tests passed.

(E2): [eUPSU performance]: This experiment benchmarks
the communication and runtime of eUPSU with 10Gbps
bandwidth, 0.4ms RTT; 100Mbps, 10Mbps and 1Mbps
bandwidth, 160ms RTT.
How to: Open a terminal, and execute the follow-
ing command: tc qdisc add dev lo root netem
delay 0.2ms rate 10Gbit to config the local net-
work as 10Gbit bandwidth with 0.4ms RTT. Evalua-
tors can adjust the network settings using different pa-
rameters as needed, such as 100Mbps, 10Mbps and
1Mbps bandwidth, 160ms RTT. Then run the com-
mand python3 test.py -pecrg_necrg_otp -cn 1
-nt 1 -nn 20 in the unbalanced_ePSU directory. The
command will run unbalanced_ePSU with set size |X |=
210, |Y | = 220, and print the information of communi-
cation and time. Evaluators can set nn to test unbal-
anced_ePSU under different set sizes, nt to test unbal-
anced_ePSU with different numbers of threads.
Note: The total running time of unbalanced_ePSU
is the sum of the MCRG execution time and the
pECRG_nECRG_OTP execution time. Similarly, the
total communication cost of unbalanced_ePSU is the
sum of the MCRG communication cost and the
pECRG_nECRG_OTP communication cost.
Results: For each run of unbalance_ePSU, this experi-
ment print information as follows:

• receiver all time15778.6, indicating the run-
ning time of MCRG in unbalanced_ePSU is
15778.6 ms.

• end 178.4 178.382 **********, indi-
cating the running time of pECRG_nECRG_OTP
in unbalanced_ePSU is 178.5 ms.

• Communication total: 1983 KB, indicating
the communication cost of MCRG in unbal-
anced_ePSU is 1983 KB.

• Comm cost = 0.482 MB, indicating the commu-
nication cost of pECRG_nECRG_OTP in unbal-
anced_ePSU is 0.482 MB.

(E3): [balanced pnMCRG performance]: This experiment
benchmarks the communication and runtime of pnM-
CRG in a balanced setting with 10Gbps bandwidth,
0.4ms RTT.
How to: Open a terminal, and execute the follow-
ing command: tc qdisc add dev lo root netem
delay 0.2ms rate 10Gbit to config the local net-
work as 10Gbit bandwidth with 0.4ms RTT. Then
run the command ./test_pnmcrg -nn 20 -nt 1 -r
0 & ./test_pnmcrg -nn 20 -nt 1 -r 1 in the bal-
anced_ePSU/build directory. The command will run the
balanced pnMCRG with set size |X | = |Y | = 220, and

print the information of communication and time. Eval-
uators can set nn to test the balanced pnMCRG under
different set sizes, nt to test the balanced pnMCRG with
different numbers of threads.
Results: For each run of balanced pnMCRG, this exper-
iment prints information as follows:

• Comm cost = 256.355 MB, indicating the commu-
nication cost of the balanced pnMCRG is 256.355
MB.

• end 78065.2 78065.166 **********,
indicating the running time of the balanced
pnMCRG is 78065.2 ms.

• pnMCRG functionality test pass!, indicating
the balanced pnMCRG functionality tests passed.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.
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