
USENIX’25 Artifact Appendix: Fast Enhanced Private Set Union in the
Balanced and Unbalanced Scenarios

Binbin Tu1,2,3, Yujie Bai1,2,3, Cong Zhang4, Yang Cao1,2,3, and Yu Chen1,2,3(B)

1School of Cyber Science and Technology, Shandong University, Qingdao 266237, China
2Quan Cheng Laboratory, Jinan 250103, China

3Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Qingdao 266237, China
4Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China

{tubinbin,yuchen}@sdu.edu.cn, {baiyujie,caoyang24}@mail.sdu.edu.cn, zhangcong@mail.tsinghua.edu.cn

A Artifact Appendix

A.1 Abstract
The source code for our two enhanced PSU (ePSU) pro-
tocols in balanced and unbalanced settings, is available
at https://github.com/real-world-cryptography/ePSU. We im-
plement the hashing, pnMCRG, and one-time pad routines
for our ePSU protocols. Our pnMCRG consists of two steps:
pMCRG and nECRG. Additionally, pMCRG can be further
divided into three steps: bOPRF + OKVS + pECRG in the
balanced setting and bOPRF + FHE + pECRG in the unbal-
anced setting. All artifact evaluation results are provided in
Section 8 of the paper and the Appendix.

A.2 Description & Requirements
The source code for our balanced and unbalanced ePSU pro-
tocols can be described as follows.

Balanced Setting. The code of our balanced ePSU is
located in the “balanced_ePSU/” folder. In this folder,
“ePSU/balanced_epsu.cpp” contains the complete implemen-
tation of ePSU, and “pnMCRG/pnMCRG.cpp” implements
pnMCRG (Figure 18: pnMCRG from pMCRG and nECRG),
including key components pMCRG (Figure 13: pMCRG
from bOPRF, OKVS, and pECRG), pECRG (Figure 11:
DDH-based pECRG), and nECRG (Figure 16: nECRG from
ssPEQT and ROT). The “test/” folder contains test pro-
grams for balanced ePSU, pnMCRG, pMCRG, pECRG, and
nECRG.

Unbalanced Setting. The code of our unbalanced ePSU is
located in the “unbalanced_ePSU/” folder. In the “MCRG/”
folder, we reuse part of APSU (https://github.com/real-
world-cryptography/APSU) to implement steps 1–7
from Figure 14 (MCRG based on bOPRF and FHE).
“pECRG_nECRG_OTP/pecrg_necrg_otp/pecrg_necrg_otp.cpp”
implements the remaining parts of our unbalanced ePSU.
“pECRG_nECRG_OTP/pnecrg/pnECRG.cpp” implements

the key components pECRG and nECRG. The “test/” folder
contains test programs for pECRG (step 8 in Figure 14)
and nECRG (Figure 16: nECRG from ssPEQT and ROT).
Additionally, “test.py” is a script to automate the MCRG and
pECRG_nECRG_OTP processes.

We run our experiments on a single Intel Core i7-13700
CPU @ 5.20GHz with 32 threads and 64GB of RAM, running
Ubuntu 22.04.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

We have open-sourced the implementation of our two
enhanced PSU protocols at https://github.com/real-world-
cryptography/ePSU. Besides, our artifact is available at
https://doi.org/10.5281/zenodo.15128481.

A.2.3 Hardware dependencies

Our ePSU currently supports Ubuntu 22.04.

A.2.4 Software dependencies

Our ePSU requires the installation of G++ (version 11.4.0)
and Python (version 3.10.12).

We leverage the constructions in [KKRT16, RS21, RR22,
FV12] to implement bOPRF, OKVS, ssPEQT, and FHE (the
building block of balanced/unbalanced pnMCRG) and use the
code from the Vole-PSI library [Vol], the SEAL library [SEA],
and the APSI/APSU library [APS, PSU]. We use an array
of optimization techniques of FHE as [CLR17, CHLR18,
CMdG+21, TCLZ23], such as batching (SIMD), windowing,
and partitioning to significantly reduce the depth of the homo-
morphic circuit. As for ROT (the building block of nECRG)
and DDH-based pECRG, we follow the libOTe library [lib]

https://github.com/real-world-cryptography/ePSU
https://github.com/real-world-cryptography/APSU
https://github.com/real-world-cryptography/APSU
https://github.com/real-world-cryptography/ePSU
https://github.com/real-world-cryptography/ePSU
https://doi.org/10.5281/zenodo.15128481

and the OpenSSL library [Ope]. Our code supports multi-
threading parallelism following the Vole-PSI library [Vol]
and the OpenMP library [MP].

A.2.5 Benchmarks

We set the computational security parameter κ = 128, the
statistical security parameter λ = 40 and use γ = 3 hash func-
tions to insert sets X and Y into the cuckoo hash table and
simple hash table, respectively. The item length is 64-bit fol-
lowing [LG23, DCZB24].

A.3 Set-up
A.3.1 Installation

Instructions for installing the required dependen-
cies are given in https://github.com/real-world-
cryptography/ePSU/blob/main/README.md. This code is
conducted on Ubuntu 22.04, with G++ 11.4.0 and CMake
3.22.1.

A.3.2 Basic Test

ePSU Test. To run our balanced ePSU, evaluators can run the
command in the balanced_ePSU/build directory. For example,
when both set sizes are |X | = |Y | = 212 and thread number
is 1, the command is ./test_balanced_epsu -nn 12 -nt
1 -r 0 & ./test_balanced_epsu -nn 12 -nt 1 -r 1,
where nn∈ {10,12,14,16,18,20,22} denotes the logarithm
of set size {210,212, 214, 216, 218, 220,222}; nt denotes the
number of threads{1,2,4,8}; r denotes the index of involved
parties (only 0 or 1).

Sub-protocols of ePSU test: run the commands in the bal-
anced_ePSU/build directory. The symbols nn, nt, and r re-
main consistent with those in ePSU.

• pnMCRG Test Command.
./test_pnmcrg -nn 12 -nt 1 -r 0 &
./test_pnmcrg -nn 12 -nt 1 -r 1

• pMCRG Test Command.
./test_pmcrg -nn 12 -nt 1 -r 0 &
./test_pmcrg -nn 12 -nt 1 -r 1

• pECRG Test Command.
./test_pecrg -nn 12 -nt 1 -r 0 &
./test_pecrg -nn 12 -nt 1 -r 1

• nECRG Test Command.
./test_necrg -nn 12 -nt 1 -r 0 &
./test_necrg -nn 12 -nt 1 -r 1

eUPSU Test. To run our unbalanced ePSU, evaluators can
run the command in the ePSU/unbalanced_ePSU directory.
Here we fix the small set size |X | = 210. For example,
when the large set size |Y | = 212 and thread number is

1, the command is python3 test.py -pecrg_necrg_otp
-cn 1 -nt 1 -nn 12, where nn∈ {12,14,16,18,20,22} de-
notes the logarithm of large set size {212, 214, 216, 218,
220,222}; nt denotes the number of threads {1,2,4,8}; cn
denotes the column number of the matrix (if the large set size
is less than 220, set to 1; otherwise set to 2).

Sub-protocols of eUPSU test: run the commands in the
ePSU/unbalanced_ePSU directory. The symbols are the same
as above.

• pECRG Test Command.
python3 test.py -pecrg -cn 1 -nt 1 -nn 12

• pnECRG Test Command.
python3 test.py -pnecrg -cn 1 -nt 1 -nn 12

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We implement our enhanced PSU in the balanced set-
ting (ePSU), and its subprotocols, including pnMCRG,
pMCRG, pECRG, and nECRG.

(C2): We implement our enhanced PSU in the unbalanced
setting (eUPSU), and its subprotocols, including pnM-
CRG and pMCRG.

A.4.2 Experiments

(E1): [ePSU performance] : This experiment benchmarks
the communication and runtime of ePSU with 10Gbps
bandwidth, 0.4ms RTT; 100Mbps, 10Mbps and 1Mbps
bandwidth, 160ms RTT.
How to: Open a terminal, and execute the follow-
ing command: tc qdisc add dev lo root netem
delay 0.2ms rate 10Gbit to config the local net-
work as 10Gbit bandwidth with 0.4ms RTT. Evalua-
tors can adjust the network settings using different pa-
rameters as needed, such as 100Mbps, 10Mbps and
1Mbps bandwidth, 160ms RTT. Then run the com-
mand ./test_balanced_epsu -nn 20 -nt 1 -r 0
& ./test_balanced_epsu -nn 20 -nt 1 -r 1 in
the balanced_ePSU/build directory. The command will
run balanced_ePSU with set size |X | = |Y | = 220, and
print the information of communication and running
time. Evaluators can set nn to test balanced_ePSU un-
der different set sizes, nt to test balanced_ePSU with
different numbers of threads.
Results: For each run of balanced_ePSU, this experi-
ment print information as follows:

• Comm cost = 277.402 MB, indicating the commu-
nication cost of the balanced_ePSU is 277.402 MB.

• end 78144.0 78143.895 **********,
indicating the running time of the balanced_ePSU
is 78144 ms.

https://github.com/real-world-cryptography/ePSU/blob/main/README.md
https://github.com/real-world-cryptography/ePSU/blob/main/README.md

• Balanced_ePSU functionality test pass!
And union size is: 1048577, indicating the
Balanced_ePSU functionality tests passed.

(E2): [eUPSU performance]: This experiment benchmarks
the communication and runtime of eUPSU with 10Gbps
bandwidth, 0.4ms RTT; 100Mbps, 10Mbps and 1Mbps
bandwidth, 160ms RTT.
How to: Open a terminal, and execute the follow-
ing command: tc qdisc add dev lo root netem
delay 0.2ms rate 10Gbit to config the local net-
work as 10Gbit bandwidth with 0.4ms RTT. Evalua-
tors can adjust the network settings using different pa-
rameters as needed, such as 100Mbps, 10Mbps and
1Mbps bandwidth, 160ms RTT. Then run the com-
mand python3 test.py -pecrg_necrg_otp -cn 1
-nt 1 -nn 20 in the unbalanced_ePSU directory. The
command will run unbalanced_ePSU with set size |X |=
210, |Y | = 220, and print the information of communi-
cation and time. Evaluators can set nn to test unbal-
anced_ePSU under different set sizes, nt to test unbal-
anced_ePSU with different numbers of threads.
Note: The total running time of unbalanced_ePSU
is the sum of the MCRG execution time and the
pECRG_nECRG_OTP execution time. Similarly, the
total communication cost of unbalanced_ePSU is the
sum of the MCRG communication cost and the
pECRG_nECRG_OTP communication cost.
Results: For each run of unbalance_ePSU, this experi-
ment print information as follows:

• receiver all time15778.6, indicating the run-
ning time of MCRG in unbalanced_ePSU is
15778.6 ms.

• end 178.4 178.382 **********, indi-
cating the running time of pECRG_nECRG_OTP
in unbalanced_ePSU is 178.5 ms.

• Communication total: 1983 KB, indicating
the communication cost of MCRG in unbal-
anced_ePSU is 1983 KB.

• Comm cost = 0.482 MB, indicating the commu-
nication cost of pECRG_nECRG_OTP in unbal-
anced_ePSU is 0.482 MB.

(E3): [balanced pnMCRG performance]: This experiment
benchmarks the communication and runtime of pnM-
CRG in a balanced setting with 10Gbps bandwidth,
0.4ms RTT.
How to: Open a terminal, and execute the follow-
ing command: tc qdisc add dev lo root netem
delay 0.2ms rate 10Gbit to config the local net-
work as 10Gbit bandwidth with 0.4ms RTT. Then
run the command ./test_pnmcrg -nn 20 -nt 1 -r
0 & ./test_pnmcrg -nn 20 -nt 1 -r 1 in the bal-
anced_ePSU/build directory. The command will run the
balanced pnMCRG with set size |X | = |Y | = 220, and

print the information of communication and time. Eval-
uators can set nn to test the balanced pnMCRG under
different set sizes, nt to test the balanced pnMCRG with
different numbers of threads.
Results: For each run of balanced pnMCRG, this exper-
iment prints information as follows:

• Comm cost = 256.355 MB, indicating the commu-
nication cost of the balanced pnMCRG is 256.355
MB.

• end 78065.2 78065.166 **********,
indicating the running time of the balanced
pnMCRG is 78065.2 ms.

• pnMCRG functionality test pass!, indicating
the balanced pnMCRG functionality tests passed.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

References

[APS] https://github.com/microsoft/APSI.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Pe-
ter Rindal. Labeled PSI from fully homomor-
phic encryption with malicious security. In
ACM CCS, 2018.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast
private set intersection from homomorphic en-
cryption. In ACM CCS, 2017.

[CMdG+21] Kelong Cong, Radames Cruz Moreno, Mari-
ana Botelho da Gama, Wei Dai, Ilia Iliashenko,
Kim Laine, and Michael Rosenberg. Labeled
PSI from homomorphic encryption with re-
duced computation and communication. In
ACM CCS, 2021.

[DCZB24] Minglang Dong, Yu Chen, Cong Zhang, and
Yujie Bai. Breaking free: Efficient multi-party
private set union without non-collusion assump-
tions. IACR Cryptol. ePrint Arch., 2024.

[FV12] Junfeng Fan and Frederik Vercauteren. Some-
what practical fully homomorphic encryption.
IACR Cryptol. ePrint Arch., 2012.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike
Rosulek, and Ni Trieu. Efficient batched obliv-
ious PRF with applications to private set inter-
section. In ACM CCS, 2016.

https://secartifacts.github.io/usenixsec2025/
https://github.com/microsoft/APSI

[LG23] Xiang Liu and Ying Gao. Scalable multi-
party private set union from multi-query secret-
shared private membership test. In ASIACRYPT,
2023.

[lib] https://github.com/osu-crypto/libOTe.

[MP] https://www.openmp.org/.

[Ope] https://github.com/openssl/openssl.

[PSU] https://github.com/real-world-
cryprography/APSU.

[RR22] Srinivasan Raghuraman and Peter Rindal. Blaz-
ing fast PSI from improved OKVS and subfield
VOLE. In ACM CCS, 2022.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-
PSI: fast OPRF and circuit-psi from vector-ole.
In EUROCRYPT, 2021.

[SEA] https://github.com/microsoft/SEAL.

[TCLZ23] Binbin Tu, Yu Chen, Qi Liu, and Cong Zhang.
Fast unbalanced private set union from fully
homomorphic encryption. In ACM CCS, 2023.

[Vol] https://github.com/Visa-Research/volepsi.

https://github.com/osu-crypto/libOTe
https://www.openmp.org/
https://github.com/openssl/openssl
https://github.com/real-world-cryprography/APSU
https://github.com/real-world-cryprography/APSU
https://github.com/microsoft/SEAL
https://github.com/Visa-Research/volepsi

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

