
USENIX Security ’25 Artifact Appendix:
A Comprehensive Formal Security Analysis of OPC UA

Vincent Diemunsch
ANSSI & Université de Lorraine,

CNRS, Inria, LORIA, France

Lucca Hirschi
Université de Lorraine,

CNRS, Inria, LORIA, France

Steve Kremer
Université de Lorraine,

CNRS, Inria, LORIA, France

A Artifact Appendix

A.1 Abstract
Using the ProVerif cryptographic protocol verifier, we per-
formed an in-depth formal security analysis of OPC UA, a
standardized Industrial Control System (ICS) protocol. Our
analysis uncovered attacks in several protocol configurations
and established security proofs otherwise. In this artifact, we
provide (i) the ProVerif models of the protocol and security
properties, (ii) the scripts for reproducing the discovery of
attacks and the security proofs (and the dependency graph
between properties), and (iii) the vulnerability report used in
the responsible disclosure.

A.2 Description & Requirements

Analyzing OPC UA with ProVerif for a given configura-
tion. We provide the Python script opcua.py (configured by
config.py) that instantiates our ProVerif model of OPC UA
to a given configuration, and launches ProVerif on it. Table 1
depicts how configurations are defined by the presence or
absence of the features and options and also specifies the
corresponding script syntax.

Config. option Admissible values Script syntax

SecurityPol. ECC | RSA ECC | RSA
Mode Enc | Sign | None Encrypt | Sign | None
SessSec. SSec | SNoAA SSec | SNoAA
UserAuth. Cert | Pwd | Ano cert | pwd | anon

Leak Ltk | Chk / Nok lt_leaks | ch_leaks / no_leaks

Reopen T | F reopen / no_reopen
Switch T | F switch / no_switch

Table 1: Model configurations are defined by setting (possi-
bly multiple) admissible values to each configuration option.
"/" denotes mutually exclusive choices.

The script opcua.py relies on two Jinja2 template files:
(i) opcua-jinja.pv that contains the protocol model and
the queries corresponding to the security properties, and
(ii) config-jinja.pvl that is used for configuring the model
and ProVerif behavior. The script takes two arguments: the

property to check and the configuration to consider. An ex-
ample of a configuration is ECC, Sign, reopen, SSec,
pwd|cert, switch, no_leaks (see Table 1). We provide
details on script usage in the README.md file and in Ap-
pendix A.3.

Attack reconstruction. As explained in the companion re-
port, ProVerif is able to automatically produce attack traces
for all reported attacks. Providing opcua.py with the prop-
erty and configuration for a given attack, ProVerif finds
and reconstructs this attack. To ease this task, the script
reproduce_attacks.sh automates those calls.

Exploring the lattice of configurations. As explained in
the companion report, exploring all configurations by hand
can be cumbersome and error-prone. We provide a lattice
exploration tool prove.py to automatically explore the lattice
of configurations and return the maximal configurations for
which a given property holds.

Other artifacts. Some security properties rely on prov-
ing invariants in the first place. The dependencies be-
tween the properties and the invariants are provided in the
file dependencies.txt. Note that the scripts prove.py,
prove.sh, and reproduce_proofs.py, explained next, al-
ready take care of proving the conjunction of properties and
invariants so that the end-user does not have to worry about
those dependencies. We provide the dependencies for com-
pleteness. Finally, the vulnerability report is available in the
file vulnerabilities.pdf.

A.2.1 Security, privacy, and ethical concerns

The attacks we found have been responsibly disclosed to the
OPC Foundation, see vulnerabilities.pdf.

A.2.2 How to access

To retrieve the required files, git clone the following repos-
itory: https://archive.softwareheritage.org/swh:
1:rev:2f94c84f6125b7c07884369ba88e35a32032475b;
origin=https://github.com/vdh-anssi/opc-ua_
security.

Note that this link has been updated with respect to the

https://archive.softwareheritage.org/swh:1:rev:2f94c84f6125b7c07884369ba88e35a32032475b;origin=https://github.com/vdh-anssi/opc-ua_security
https://archive.softwareheritage.org/swh:1:rev:2f94c84f6125b7c07884369ba88e35a32032475b;origin=https://github.com/vdh-anssi/opc-ua_security
https://archive.softwareheritage.org/swh:1:rev:2f94c84f6125b7c07884369ba88e35a32032475b;origin=https://github.com/vdh-anssi/opc-ua_security
https://archive.softwareheritage.org/swh:1:rev:2f94c84f6125b7c07884369ba88e35a32032475b;origin=https://github.com/vdh-anssi/opc-ua_security

paper to include improved scripts and documentation for re-
producibility of the results.

A.2.3 Hardware dependencies

The attacks described in the paper, can be found and recon-
structed with ProVerif on a standard laptop with 16 GB of
RAM.

However, ProVerif requires more memory to establish the
security proofs. To be able to establish all proofs, one needs
150 GB of RAM. Fast CPUs speed up such computations, but
are not mandatory. Note that ProVerif is not multithreaded.

The lattice exploration tool is computationally much more
demanding but is parallelized and thus benefits from multi-
core machines. We recommend a machine with at least
20 CPUs and 378 GB of RAM to run the lattice exploration
tool for all properties.

A.2.4 Software dependencies

The results presented in the companion paper have been
obtained with the development version of ProVerif, com-
piled from the sources on branch improved_scope_lemma.
This is possible on Unix / MacOS / Windows platforms.
Note that Objective Caml version 4.03 or higher is re-
quired. ProVerif can be installed from its sources available
at https://gitlab.inria.fr/bblanche/proverif/. For
using our scripts, you also need Python version 3.11 or higher
with the template engine Jinja2.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

The different alternatives to install an OCaml compiler are pre-
sented at https://ocaml.org/. Then, build ProVerif from
its sources:
$ git clone https://gitlab.inria.fr/bblanche/proverif.git
$ cd proverif/proverif
$ git checkout 6a803aa13ccde13c0574912da93f029f86f63951
$./build
$./proverif --help

Make sure that the ProVerif executable is in your path and
available from the command line.

Install Python version 3.11 or higher by follow-
ing the instructions from https://www.python.org/
downloads/. The template engine Jinja2 (https://pypi.
org/project/Jinja2/) can be installed with your preferred
Python packet manager. For example using pip3 (install with
sudo apt install python3-pip on Unix platforms), one
can install this dependency with the following command:
$ pip3 install jinja2.

A.3.2 Basic Test

To check that the protocol model is indeed executable, one
can query the reachability of events in a simple configuration.
Note that reachability of an event returns false, whereas an
unreachable event returns true, i.e., the model is not able to
execute a given event in the specified configuration. For exam-
ple, executing: $ python3 opcua.py -s -c "ECC, Sign,
reopen, SSec, pwd|cert, switch, no_leaks" will in-
clude (among others) the results:
- Query not event(S_open_channel(id_<xxx>,Sign,ECC,false))
is false.
- Query not event(S_open_channel(id_<xxx>,Encrypt,ECC,false))
is true.

as Sign mode is enabled, but not Enc (where <xxx> is an
integer whose value may change among runs).

A.4 Evaluation workflow
A.4.1 Major Claims

We summarize here the claims of the companion paper, no-
tably from Section 5 "Analysis Results", that describes the
attacks and the scope of the proofs.

(C1): "Except for the signature oracle attack, all vulnera-
bilities we report were automatically discovered using
ProVerif on our model." See (E1).

(C2): "Proofs for ConfC and ConfS are achieved with the
maximal configuration for RSA; for ECC, we can prove
the maximal configuration excluding None and SNoAA:
(i) without Leak, as well as (ii) with Leak and either
without Reopen, or without Switch. "
"Proofs for ConfPwd are for the maximal configuration
without Leak. With Leak, we must choose between Re-
open and Switch. We otherwise capture all configura-
tions when considering in isolation SecurityPolicy and
Mode." See (E2).

(C3): "Proofs for Agr−S can be obtained without Leak for
Reopen + Switch; and with Leak without Reopen nor
Switch."
"Regarding Agr−C , one can additionally prove it for RSA
+ Leak + Reopen + Switch (without Enc)." See (E3).

(C4): "We developed a Python script to efficiently explore
the verification of all configurations for a given prop-
erty, and extract maximal configurations for which the
property holds, minimal configurations for which the
property does not hold, as well as minimal configura-
tions for which ProVerif does not terminate successfully."
See (E4).

A.4.2 Experiments

(E1): [Attack finding and reconstruction] [5 human-minutes
+ 30 compute-minutes + 150 MB disk]:
How to: For each attack, the README.md file provides
detailed instructions on how to automatically find the
attack and produce an attack trace in a PDF file (or, if

https://gitlab.inria.fr/bblanche/proverif/
https://ocaml.org/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://pypi.org/project/Jinja2/
https://pypi.org/project/Jinja2/

applicable, inspect how ProVerif constructs a clause that
contradicts the query).
Execution: Run ./reproduce_attacks.sh, which
calls opcua.py for each of the attacks.
Alternatively: run opcua.py manually. For instance,
one can refind the attack §5.1 Race Condition for
User Contexts by executing $ python3 opcua.py
-q "3.1.race" -c "ECC, Encrypt, no_reopen,
SSec, cert, no_switch, no_leaks" --html.
Results: ./reproduce_attacks.sh takes less than
30 minutes to execute and stores results in several
output_<attack> directories (where attack refers to
the specific attack). The complete output can be browsed
in index.html of that folder and attack traces are avail-
able in tracei.pdf (where i is an integer, typically 1
or 2). Specifically, the race condition attack is found and
reconstructed in less than 10 s, and depicted in the file
output/trace1.pdf when produced with opcua.py.

(E2): [Confidentiality properties: ConfC, ConfS & ConfPwd]
[1 human-hour + 10 compute-hours]:
How to: The results.md file provides detailed instruc-
tions on how to launch ProVerif with the maximal con-
figurations that back up our claim (C2).
Execution: Only the command for the first configura-
tion for ConfC is shown here. The others are similar.
$ python3 opcua.py -q "Conf[C]" -c "RSA,
None|Sign|Encrypt, reopen, SNoAA|SSec,
anon|pwd|cert, switch, lt_leaks"
Results: All commands terminate with a ProVerif veri-
fication summary stating that the query is true.

(E3): [Weakened agreement properties: Agr−S and Agr−C]
[1 human-hour + 24 compute-hours]:
How to: The results.md file provides detailed instruc-
tions on how to launch ProVerif with the maximal con-
figurations that back up our claim (C3). In particular, it
describes which invariants must first be proven and how.
Preparation: The property and its invariants to prove
can be launched in parallel on a multi-core machine.
Note however that some queries can be very demand-
ing, for instance 3.1.B in configuration ECC + Enc
+ Cert + Leak required 23 compute-hours and 30 GB
of memory.
Execution: Only the command for proving the main
property Agr−S without its invariants (called "3.1" in
our model) is shown here: $ python3 opcua.py -q
"3.1" -c "RSA, Encrypt, no_reopen, SNoAA,
cert, no_switch, lt_leaks". All other required
invariants, according to dependencies.txt, must be
proved with the same configuration.
Because this can be cumbersome, we additionally
provide a helper script reproduce_proofs.py that
will prove the property and all its invariants auto-
matically. For example, the following command
will fully prove Agr−S for the provided configu-

ration: $ python3 reproduce_proofs.py -q
"Agr-[S->C]" -c "RSA, Encrypt, no_reopen,
SNoAA, cert, no_switch, lt_leaks".
Results: All commands must terminate with a ProVerif
verification summary stating that all queries are true.
The first command proving 3.1 takes less than 3 seconds,
the command proving Agr−S and its invariant concludes
in less than 15 seconds. Some other properties and con-
figurations from results.md are more computationally
demanding, hence the overall time estimation.

(E4): [Launching lattice exploration campaigns] [15 human-
minutes + 24 compute-hours]:
How to: The last section of README.md describes in
details how to use prove.sh to launch complete lattice
exploration campaigns.
Preparation: Lattice exploration campaigns will
launch many different ProVerif runs and is thus best
suited for a server with many cores and a lot of memory
(see Appendix A.2.3).
Execution: A campaign on the property ConfC can
be launched with $./prove.sh "Conf[C]" "RSA,
None|Sign|Encrypt, reopen, SNoAA|SSec,
anon|pwd|cert, switch, lt_leaks" (note the
second argument that defines the maximal configuration
the campaign aims for; here the maximal configuration
without ECC). The script first asks for a starting
configuration, press Enter to use the minimal one.
Results: The script displays: 1. "the minimal FALSE
configurations" for which an attack was found, 2. "the
minimal configurations" which could not be proved with
the current resources budget (time and RAM), 3. "the
maximal configurations" which were proven.
For the above command and after less than 20 core-
minutes, the script will have ended the exploration and
shows the proven maximal configuration (which was the
maximal provided configuration).
Note that for other properties, some configurations may
not be proven at all and the exploration will not terminate.
We kill the script after some time, when we are able to
extract the wanted information from the results.

A.5 Notes on Reusability
Our ProVerif models can be extended to explore new protocol
evolutions and fixes. Our lattice exploration tool prove.py
can be adapted to other protocols, see for example our generic
lattice class Trie and mark_trie function.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

