
USENIX Security ’25 Artifact Appendix: Phantom Trails: Practical
Pre-Silicon Discovery of Transient Data Leaks

Alvise de Faveri Tron
Vrije Universiteit Amsterdam

Raphael Isemann
Vrije Universiteit Amsterdam

Hany Ragab
Vrije Universiteit Amsterdam

Cristiano Giuffrida
Vrije Universiteit Amsterdam

Klaus von Gleissenthall
Vrije Universiteit Amsterdam

Herbert Bos
Vrije Universiteit Amsterdam

A Artifact Appendix

A.1 Abstract

We present a prototype of our pre-silicon fuzzer that uses a
novel detection mechanism based on implicit secrets to find
transient data leaks in CPU designs. Our artifact includes all
the components of our fuzzing infrastructure, namely (1) an
LLVM pass that adds bit-precise taint-tracking to the CPU
simulation, (2) an AFL++ fork that adds the option to use
taint as feedback, and (3) a LibAFL fuzzing driver, along with
our RISC-V instruction generator and mutator, to drive the
fuzzing loop. The artifact also includes the detector infras-
tructure we built for BOOM, namely (1) an architectural sim-
ulator that infers all architecturally-accessed locations, (2) the
BOOM configuration used for fuzzing and (3) the C++ wrap-
per that drives the Verilated simulation and detects crashes.
The artifact also includes a testsuite of minimal detectable
PoCs for both known vulnerabilities (Spectre-v1, Spectre-v2,
Meltdown, Spectre-v4, Spectre-RSB) and the new Spectre-
LP vulnerability. Information about each component can be
found in the README and in the paper.

A.2 Description & Requirements

The scripts provided in the artifact can be used to setup Phan-
tom Trails on the BOOM core and evaluate its results.

A.2.1 Security, privacy, and ethical concerns

Experiments are completely local, and no destructive steps
are taken during evaluation.

A.2.2 How to access

The main entrypoint of our artifact is available at
https://github.com/vusec/phantom-trails at the
tag ae-initial. The final artifact version will be available
on Zenodo at https://zenodo.org/records/14726711.

A.2.3 Hardware dependencies

No specific hardware feature is required, however to repro-
duce the TTE measurements of our fuzzing campaigns it is
required to run on comparable machines. Our experiments
have been conducted on two machines:

1. (M1) AMD Ryzen Threadripper PRO 5995WX machine
with 128 cores and 500 GiB of RAM

2. (M2) Intel Xeon Silver 4310 machine with 48 cores and
126 GiB of RAM

A.2.4 Software dependencies

No specific OS is required in principle. Our experiments have
been tested on Ubuntu Linux 22.04.

A.2.5 Benchmarks

None.

A.3 Set-up

The only prerequisites are git and docker. Scripts require
bash and python3.

A.3.1 Installation

Clone the repository and all dependencies:

git clone https://github.com/vusec/phantom-trails
cd phantom-trails
git submodule update --init --recursive

Build the instrumented simulation in a container (takes
≈40 minutes on a 48 cores/126GB RAM machine):

cd BOOM
./start.sh

https://github.com/vusec/phantom-trails
https://zenodo.org/records/14726711

By default, this script will build Phantom Trails with basic
block coverage as feedback and the BOOM core simulation in
its MediumBoom configuration inside of a container named
boom-fuzz-manual-started. Once the script has termi-
nated, you should get a shell inside of the docker container.

If the build script exits before completion, it is very likely
that the process ran out memory during the building and link-
ing phases of LLVM. In that case, you can modify (decrease)
the number of parallel jobs by substituting nproc at line 21
of BOOM/start.sh.

A.3.2 Basic Test

After start.sh the shell is located in the
/chipyard/sims/verilator folder of the Docker
container. From there you can run some simple tests.

To verify that the detector works as intended, you can run:

phantom-trails run \
/Samples/build/bins/pocs/meltdown-us.bin

This loads the selected RISC-V flat binary in
the instrumented simulation’s memory and runs
it. The source code of the test can be found in
Samples/src/pocs/meltdown-us.S.

The expected results is that the command will fail, and will
indicate "Meltdown PF" as cause before exiting.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Phantom Trails is able to detect all known speculative
vulnerabilities on the BOOM core (Spectre-v1, Spectre-
v2, Spectre-RSB, Spectre-SSB and Meltdown) at the
secret-access step. Experiment E1 confirms that each
PoC of our testsuite is correctly detected and classified,
as reported in Section 7.1, paragraph "Poc Detection".

(C2): Phantom Trails was able to uncover a new Spectre-
v1 variant, Spectre-LP, described in Section 8 of the
paper. Experiment E2 confirms that different variants
of Spectre-LP, including a return-based variant and a
branch-based variant, are detected by Phantom Trails.

(C3): Phantom Trails can be extended to handle MDS. Exper-
iment E3 reproduces the detection behavior as reported
in Section 5.4 (MDS Detection).

(C4): Phantom Trails is able to find all known transient vul-
nerabilities on the BOOM core in reasonable time de-
spite the lack of templates. Experiment E4 reproduces
one of our fuzzing campaigns as described in Section 7.2
(Question Q1), whose results are reported in Figure 8-10
(blue) and in Table 1 (left).

(C5): Phantom Trails is still able to perform similarly to
templated approaches on SmallBoomCore. Experiment
E5 reproduces the TTE measurements reported Table 3
(rightmost column).

(C6): Phantom Trails uses simple control-flow and data-flow
optimizations. Experiment E6 described in Section 7.2
(Question Q3) shows the impact of each optimization.
Our results are reported in Table 2.

(C7): Phantom Trails provides the possibility of using Taint
as a fuzzing feedback. Experiment E7 described in Sec-
tion 7.2 (Question Q2) can be used to measure the im-
pact of the taint feedback. Our results are reported in
Figure 8-10 (orange) and in Table 1 (right).

A.4.2 Experiments

(E1): PoC Detection [1 compute-minutes]: Run Phantom
Trails on PoCs of known vulnerabilities.
Preparation: After running BOOM/start.sh you
should be running in a fish shell inside of the Docker
container, in the /chipyard/sims/verilator folder.
Execution: Run the following (fish syntax)

for poc in /Samples/build/bins/pocs/*;
echo "===== Running $poc ======"
phantom-trails run $poc;

end;

Results: For each sample, Phantom Trails should abort
and print “Found issue: ” alongside its classification.
Samples should include 1 Meltdown sample (reported as
Meltdown_LOAD_PFAULT), 2 Spectre-RSB samples, 2
Spectre-v1 samples, 1 Spectre-v2 sample, and 2 Spectre-
v4 samples.

(E2): Spectre-LP [1 compute-minutes]: Run Phantom Trails
on Spectre-LP snippets.
Preparation: You should be running in a fish
shell inside of the Docker container, in the
/chipyard/sims/verilator folder.
Execution: Run the following (fish syntax)

for poc in /Samples/build/bins/spectre-lp/*;
echo "===== Running $poc ======"
phantom-trails run --init=/dev/null $poc;

end;

Results: The folder includes 3 Spectre-LP PoCs. For
each of them, Phantom Trails should abort and print
“Found issue: Spectre_v1_new”.

(E3): MDS [15 compute-minutes]: Build BOOM with MDS
and run Phantom Trails to verify that MDS is detected.
Preparation: Inside of the Docker container, build
BOOM with MDS-SB:

phantom-trails build --config MDSConfig -j<JOBS>

Execution: Run the following

phantom-trails run --mds --config=MDSConfig \
/Samples/build/bins/mds-tests/mds.bin

Results: The command is expected to abort after print-
ing “Found issue: MDS_STORE_BUFFER”.

(E4): Fuzzing Campaign with SW Feedback [24 to 48
compute-hours]: Run a fuzzing campaign on Medium-
BoomCore with the Software Feedback.
Preparation: You should be inside of the Docker con-
tainer. TTEs reported in Table 1 of the paper (left part)
have been observed on machine M1 described in Sec-
tion A.2.3.
Execution: Run the fuzzer

phantom-trails fuzz

By default, this will run the fuzzer until all samples in
expected_findings are found. You can kill the fuzzer
at any time with:

sudo killall sim-fuzzer && sudo killall run-FuzzConfig

Results: While the fuzzer is running, you should
see TTEs being updated live in the TUI (top-right
panel). Once the fuzzer has found all expected
crashes, the results of the campaign are available
in /chipyard/sims/verilator/out. The same
folder is also available outside of the container, under
BOOM/results/manually-started/<timestamp>/.
Crashing inputs after classification can be found in
the out/causes folder, in flat-binary format. You can
retrieve time-to-exposure and iterations-to-exposure
from within the container with:

Print TTEs.
/external/BOOM/eval-results-folder.py -z out/
Printe ITEs.
/external/BOOM/eval-results-folder.py -t out/

(E5): Fuzzing Campaign on SmallBoom [< 1 compute-
hour]: Run a fuzzing campaign on SmallBoomCore for
Meltdown and Spectre-v1 (used to compare against Spec-
Doctor).
Preparation: Inside of the Docker container, build
BOOM in the SmallBoom configuration:

phantom-trails build --config SmallFuzzConfig -j<JOBS>

Modify expected_findings to match SpecDoctor.

Copy old list.
cp expected_findings expected_findings_all
Create new list.
cat expected_findings_all | head -n 2 > expected_findings
Only Spectre v1 and Meltdown should be remaining.

Finally, remove old results and fuzzing queue.

rm -rf out/*
rm .cur_input*

Execution: Run the fuzzer

phantom-trails fuzz --config SmallFuzzConfig

To kill the fuzzer, same instructions as Experiment E4
apply.

Results: TTEs reported in Table 3 of the paper (right-
most column) have been observed on machine M2 de-
scribed in Section A.2.3. Statistics of the campaign can
be printed as described in Experiment E4.

(E6): Impact of Fuzzing Optimizations [40 minutes + 24
compute-hours]: Remove optimizations from the fuzzer
and verify their effect on vulnerability discovery.
Preparation: To run a fuzzing campaign without op-
timizations you will need to apply the patches located
in phantom-trails/eval-patches. In principle it is
possible to apply one patch at a time and re-run the
fuzzing campaign. The most evident effect should be
visible by removing both control- and data-flow opti-
mizations (“Basic” column in Table 2).

Exit from the container.
(container) exit
cd <PHANTOM_TRAILS_TOP_FOLDER>
Remove dataflow opts.
git apply eval-patches/no-dataflow-*
Remove control flow opts.
git apply eval-patches/no-cfg-*
cd Fuzzer
git apply ../eval-patches/fuzzer/no-cfg-*

Finally, re-build the container. This can take up to 40
minutes.

cd BOOM
./start.sh

Execution: From within the newly built container, run
the fuzzer

phantom-trails fuzz

To kill the fuzzer, same instructions as Experiment E4
apply.
Results: After a 24-hours run it is highly probable that
only Spectre-v1 and Meltdown will be found by the tool,
as reported in Table 2 of the paper (“Basic” column).

(E7): Fuzzing Campaign with Taint Feedback [40 minutes
+ 24h to 48 compute-hours]: Run a full fuzzing campaign
on MediumBoomCore with the Taint Feedback and ver-
ify TTEs.
Preparation: To run a fuzzing campaign with the taint
feedback you will need to re-build the instrumented
simulation. Exit from the container and run (from the
phantom-trails top folder):

Discard all previous modifications.
git checkout .
Start container with Taint feedback.
cd BOOM
./start.sh "Taint"

This can take up to 40 minutes.
Execution: Run the fuzzer

phantom-trails fuzz

To kill the fuzzer, same instructions as Experiment E4
apply.
Results: TTEs reported in Table 1 of the paper (right
part) have been observed on machine M1 described in
Section A.2.3. Statistics of the campaign can be printed
as described in Experiment E4.

A.5 Notes on Reusability
Phantom Trails can be used beyond the scope of this paper
to introspect the microarchitectural behavior of RISC-V pro-
grams and evaluate different feedback metrics.

• Phantom Trails help

phantom-trails -h

This should show a summary of the three main com-
mands provided by the phantom-trails script: build,
which can be used to build a specific configuration of the
BOOM simulation (default one is FuzzConfig), run,
which can be used to run the detector on a single pro-
gram, and fuzz, which can be used to start a fuzzing
campaign.

phantom-trails is a simple python script that
wraps the invocation of make, run-FuzzConfig
(verilated simulation entrypoint) and sim-fuzzer
(LibAFL fuzzer) for build, run and fuzz respec-
tively. The content of the script can be inspected
at BOOM/scripts/phantom-trails (or in the
/scripts/ folder within the container).

• Compile your own sample: once inside the container,
you can run the following

Add RISC-V toolchain to env.
bash
source /chipyard/env.sh
fish

Add new ASM file to src.
cd /Samples/src
echo "nop" > test.S
cd /Samples && make

Run it with Phantom trails.
cd /sims/chipyard/verilator
phantom-trails run /Samples/build/bins/test.bin

• Debugging and Introspection: all configurations can be
built with an optional debug flag

Clean previous sims.
make clean

Build in debug mode.
phantom-trails build -j<PROCS> --debug

This enables the possibility of adding additional printing
flags at runtime which can be used to inspect the cycle-
by-cyle state of the microarchitecture

Run in verbose mode.
phantom-trails run --verbose <SAMPLE>
Add --logfile out.log to output to a file.

Print cycle-by-cycle taint and RoB info.
phantom-trails run --report <SAMPLE>

Inspect specific buffers.
PRINT_REGFILE=1 PRINT_LSQ=1 phantom-trails run <SAMPLE>
See boom-wrapper/src/main/resources/csrc/args.h
for other print flags.

• Initialization: you can change or disable the ini-
tialization snippet by providing the –init flag to
phantom-trails run (–init=/dev/null to disable)

phantom-trails --init=/dev/null <SAMPLE>

This will avoid prepending the init snippet to the sample
under test. To inspect the state of memory right before
execution (e.g., if you want to check the exact addresses
of the initialization snippet and the sample-under-test in
DRAM) you can run:

This generates <SAMPLE>.bin.memdump
MEMDUMP=1 phantom-trails <SAMPLE>.bin

Disassemble the flat binary.
riscv64-unknown-elf-objdump \

-b binary -m riscv:rv64 -M no-aliases -D \
<SAMPLE>.bin.memdump

• Other metrics: Our Dockerfile by default builds LLVM
with MSAN (more precisely, our version of MSAN – BF-
SAN) but in principle different sanitizers can be provided
at this stage. Moreover, we build the fuzzing instrumenta-
tion using AFL++, and in principle more coverage maps
can be added to the codebase we already provide.

• Other buffers: While we use the Physical Reg-
ister File as a taint sink, it is possible to move
the sink to other buffers as well. For this pur-
pose, you can modify checkTaintSinks() in
boom-wrapper/src/main/resources/csrc/Simulator.h.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

