
USENIX Security ’25 Artifact Appendix: CoVault: Secure, Scalable
Analytics of Personal Data

Roberta De Viti1, Isaac Sheff1* , Noemi Glaeser2,4*
, Baltasar Dinis3*

, Rodrigo Rodrigues3,

Bobby Bhattacharjee4, Anwar Hithnawi5
*
, Deepak Garg1, and Peter Druschel1

1Max Planck Institute for Software Systems (MPI-SWS), Saarland Informatics Campus
2Max Planck Institute for Security and Privacy (MPI-SP)

3Instituto Superior Técnico (ULisboa), INESC-ID
4University of Maryland

5ETH Zürich

A Artifact Appendix

A.1 Abstract

There is growing awareness that the analysis of personal data,
such as individuals’ mobility, financial, and health data, can
provide significant societal benefits. However, liberal soci-
eties have largely refrained from such analytics, arguably due
to the absence of secure platforms that can scale to billions of
records while operating under a very strong threat model. We
argue that a key missing piece is an architecture capable of
scaling (actively-)secure multi-party computation (MPC) hor-
izontally without weakening security. To bridge this gap, we
introduce CoVault, an analytics platform that combines server-
aided MPC with trusted execution environments (TEEs). This
approach enables the colocation of MPC parties in a single
datacenter without reducing security while scaling MPC hori-
zontally up to the datacenter’s available resources.

Our artifact includes the source code of our prototype im-
plementation of CoVault, along with the scripts to execute
the code and produce all the major evaluation results that are
presented in the technical paper. Additionally, we provide
Python scripts for visualizing the results.

A.2 Description & Requirements

We outline the hardware and software requirements for run-
ning our artifact in § A.2.3 and § A.2.4, respectively. The
README.md file in our artifact includes step-by-step instruc-
tions to help users configure their own machines for running
CoVault provided they meet the requirements. We refer to
this scenario as the “generic setup”, which is relevant to a
generic user.

*Affiliation at time work was done.

To facilitate artifact evaluation, we provide USENIX Se-
curity evaluators with SSH access to a set of pre-configured
virtual machines (VMs) on Google Cloud Compute Engine
(GCE). These VMs satisfy all hardware and software depen-
dencies, and are set up for intercommunication, as well as
mutual authentication. We refer to this scenario as the “GCE
setup”, which is relevant to the USENIX Security evaluators.

The remainder of this section and §A.3 provide further de-
tails on hardware and software dependencies (§A.2.3, §A.2.4)
and installation steps (§A.3), However, evaluators with SSH
access to the GCE setup may skip these and proceed directly
to §A.4.

A.2.1 Security, privacy, and ethical concerns

The artifact poses no security, privacy, or ethical concerns.
It does not compromise system integrity, and all datasets
are synthetic, hence devoid of any sensitive personal data.
(In fact, CoVault uses data-oblivious computation protocols,
whose performance characteristics are independent of the
actual data.)

A.2.2 How to access

The artifact is available at https://zenodo.org/records/
14736568. During the evaluation phase, evaluators will re-
ceive the SSH keys to access our pre-configured GCE setup,
as described above.

A.2.3 Hardware dependencies

Generic setup. Our CoVault prototype runs on an inter-
connected set of machines (physical or virtual), where half
support one second-generation TEE type (e.g., Intel TDX) and
the other half support a different second-generation TEE type

https://zenodo.org/records/14736568
https://zenodo.org/records/14736568


(e.g., AMD SEV-SNP). Second-generation TEEs encapsulate
entire VMs, unlike first-generation TEEs (e.g., Intel SGX).
The minimum requirements to run CoVault is one machine of
each TEE type, each with at least 2 CPU cores.

To run all the scripts reproducing the experiments in the
paper, each machine must have at least 4 CPU cores, 32 GB
RAM, and 50 GB of free disk space. Insufficient disk space
may result in truncated output logs (including latency results)
and the impossibility to run tests with the AG2PC protocol,
which requires to store large precompiled MPC circuits.

The results in the evaluation section of the paper were
obtained in a setup with at least 15Gbps interconnect band-
width among the machines (Google gVNIC on GCE). While
CoVault can run with lower bandwidth, this may cause net-
work bottlenecks, increased latencies, and, in the case of our
prototype, timeouts.

An experiment in the paper measures the cost of TEE over-
head in CoVaultṪo this end, it compares CoVault to an other-
wise identical setup without the TEEs. To run this experiment,
the user must either (i) have the ability to enable and disable
TEE encapsulation on the same machine pair, or (ii) have
access to two identical (physical or virtual) machines pairs
– one with the two active TEEs of different types and one
without TEEs.

Finally, the horizontal scaling experiments in the paper use
varying VM and core configurations: (i) 2 VMs with at least
2 cores each, (ii) 2 VMs with at least 4 cores each, (iii) 4
VMs with at least 2 cores each, (iv) A total of 22 cores per
TEE type, preferably distributed across multiple VMs. The
README.md file specifies the required configuration for each
experiment. Reproducing a scaling experiment requires its
corresponding resources.

GCE setup. The GCE setup meets all of the above require-
ments. In particular, it is preconfigured with a sufficient num-
ber of Cloud VMs encapsulated into either Intel TDX or AMD
SEV-SNP TEEs to run all experiments. Furthermore, it in-
cludes additional VMs with identical hardware and software
configurations but without active TEEs for measuring TEE
overhead. The Intel VMs are c3-standard-8 and the AMD
VMs are n2d-standard-8; they are deployed in the us-central1-
a zone and use the gVNIC (15Gbps). The README.md file
specifies which set of GCE VMs to use for each experiment.

A.2.4 Software dependencies

Generic setup. Our codebase has been tested on Ubuntu
22.04 LTS and Debian 12. While it is expected to work on
other Unix-based environments, dependency names may vary
from those automatically installed by our setup scripts. The
artifact requires C++ build tools, Python3, and pip3 for in-
stalling Python packages. All other dependencies are installed
by setup.sh, as detailed in the README.md file.

GCE setup. The guest OS on all GCE VMs is Ubuntu
22.04 LTS, and all the software dependencies have already
been installed.

A.2.5 Benchmarks

As noted in §A.2.1, CoVault runtime cost is a function of the
input dataset size and fixed integer width, but it is indepen-
dent of the actual data. Therefore, our experiments use only
synthetic datasets, which are generated by our code.

Generic setup. The README.md file provides step-by-step
instructions for generating these datasets and populating a
Redis database.

GCE setup. On the GCE setup, this data generation process
has already been completed.

A.3 Set-up
Generic setup. Once all hardware and software dependen-
cies are met, the user can obtain the artifact from the Zenodo
URL in § A.2.2. The README.md file provides instructions
for installing dependencies, setting up the CoVault prototype,
writing CONFIG.me files, and troubleshooting common issues.

GCE setup. On the GCE setup, the artifact is already in-
stalled and available at /home/covault. Additionally, all re-
quired configuration files are already set up.

A.3.1 Installation

Generic setup. As mentioned in §A.2.4, our software de-
pendencies are the standard C/C++ build tools, Python3, and
pip3. Our setup scripts intentionally do not install these de-
pendencies, as the process is OS-specific.

On Ubuntu 22.04 LTS, the required software can be
installed with: (i) sudo apt install build-essential;
(ii) sudo apt install python3; (iii) sudo apt install
python3-pip. Additionally, running sudo apt update may
be useful in some cases. (Note that our scripts should not be
sensitive to specific versions of Python3, but we have only
tested with Python 3.11.5.)

After downloading the artifact (§A.2.2), users can follow
the instructions in README.md to install CoVault and its addi-
tional dependencies.

GCE setup. On the GCE setup, CoVault is preconfigured
for evaluation – no additional installation is required.

A.3.2 Basic Test

The README.md file provides step-by-step instructions for
running basic tests like the primitives.sh script.



A.4 Evaluation workflow
A.4.1 Major Claims

Next, we summarize the main experimental results claimed
in Sec. 6 of the CoVault technical paper. These claims, (C1)–
(C5) below, can be verified by running the corresponding
experiments (E1)–(E5) in §A.4.2. We begin with claims re-
lated to the choice of the underlying MPC protocol and the
performance of basic query primitives in CoVault:
(C1) DualEx is a compelling choice for the protocol under-

lying CoVault, when a 1-bit leak is acceptable. On one
core pair, it runs twice as long as semi-honest garbled
circuits (GCs) by design and it is about 10x faster than
the fully maliciously-secure protocol, AG2PC. The over-
head of TEEs in CoVault is negligible compared to MPC
(e.g., under 1s in our experiment), with MPC being the
main bottleneck. This claim is verified by experiment
(E1) in §A.4.2 and described in Sec. 6.2, Figure 3 of the
technical paper.

(C2) The runtime of linear table scans increases linearly with
the input size, while sorting, sorted merge, and com-
paction exhibit slightly super-linear growth. Sorting is
significantly more expensive than compaction (which
is why our reduce trees sort only in the first stage and
merge-compact in subsequent stages). This claim is es-
tablished using experiment (E2) in §A.4.2 and described
in Sec. 6.2, Figures 4a and 4b of the paper.

We further evaluate CoVault in the context of an epidemic
analytics scenario:
(C3) Query latency scales almost inversely with the number

of available core pairs (of the two TEE types). Even with
only 4 core pairs (i.e., 4 cores on 2 VMs), our implemen-
tation of basic FGA queries completes in a reasonable
time. For instance, queries q1 and q2 in the technical
paper complete within 20min and 3h in our experiments
on 4 core pairs, and their execution time improves in
proportion to the number of core pairs available to our
MapReduce setup. This claim is established by experi-
ment (E3) and is described in Sec. 6.3, Figure 6 (blue
lines) of the technical paper.

In addition to our empirical tests, we developed a perfor-
mance model based on detailed measurements of basic units
(individual mappers, reducers, and other query primitives) to
extrapolate query latency at scale (Sec. 6.3.1 of the technical
paper):
(C4) Our performance model correctly predicts the empir-

ical results of q2 in small deployments, provided that
the measurements of basic units are taken on the same
testbed as full queries. This claim is established by exper-
iments (E4) and (E5), and the corroboration between the
extrapolated results and empirical results on our small
deployment is shown in Sec. 6.3 of the technical paper,
Figure 6b (yellow line).

(C5) We claim that colocation of the computing parties is key

to scaling MPC-based computations. Our performance
model indicates that executing epidemic analytics for a
country with 80M people in a reasonable amount of time
requires substantial bisection bandwidth, which is diffi-
cult to achieve across datacenters. This claim is based on
results from our performance model (experiments (E4)
and (E5)), as discussed in Sec. 6.3.1 of the technical
paper.

A.4.2 Experiments

The artifact includes a README.md file detailing the steps to
configure the environment, run experiments, collect results,
and generate figures supporting claims C1–C5 in § A.4.1.
While the GCE setup is preconfigured for immediate use, the
README.md also provides guidance on how to configure a
generic setup for running the experiments successfully.

We summarize the experiments below, linking them to
the claims they support. The human hours assume access to
our GCE setup. The compute hours are approximate, but we
recommend planning conservatively. In fact, using a testbed
on a public Cloud such as GCE introduces higher variability
than an in-house controlled setup due to factors like resource
contention, network fluctuations, background load from other
tenants, and potential hardware allocation variations by the
Cloud provider.

For this reason, although a single experiment may not take
long, multiple repetitions are required to obtain stable and
repeatable results, extending overall runtime. The compute
hours below refer to the default number of repetitions set in
the scripts. Our evaluation in Sec. 6 of the technical paper
aggregated results over two months of execution.
(E1) [0.1 human-hour + 24 compute-hours per configura-

tion]: Microbenchmarks comparing the performance of
the MPC protocols used in our evaluation, and breaking
down the costs of different system components (C1).

(E2) [0.1 human-hour + 24 compute-hours per configura-
tion]: Microbenchmarks evaluating the cost of basic
query primitives as a function of the input size (C2).

Evaluation in the context of an epidemic analytics scenario:
(E3) [0.1 human-hour + 24–72 compute-hours per configura-

tion]: Direct measurement of horizontal scaling with a
small number of cores for two queries described in the
paper (C3).

Extrapolation of query latency to a very large number of cores
and big data:
(E4) [0.1 human-hour + 24 compute-hours per configura-

tion]: Measurements of basic execution units and latency
extrapolation using the performance model (C4 and C5).

(E5) [0.1 human-hour + 0.1 compute-hours per configura-
tion]: Execution of the performance model and analysis
of results (C4 and C5).



A.5 Notes on Reusability
The README.md file provides guidelines for tuning various
parameters in the scripts, such as the number of repetitions,
whether to execute DualEx or a semi-honest protocol for com-
parison, the roles of generator and evaluator in a semi-honest
execution, and input sizes.

Users can also modify the C++ code to adjust parame-
ters like the size of intermediate results between mappers
and reducers and attribute bit-width. While our prototype
evaluates a specific set of queries, users can implement
custom FGA queries by leveraging the building blocks in
src/primitives.cpp and replicating the MapReduce exe-
cution logic from our test files.

Note that if the input size for certain experiments is signifi-
cantly increased, additional RAM may be required to process
the data in-memory. Otherwise, the experiments may run out
of memory and terminate prematurely.

Additionally, although our prototype evaluates queries in
the context of an epidemic analytics scenario, is it possible to
change the database schema and the queries.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


