
USENIX Security ’25 Artifact Appendix: CERTPHASH: Towards
Certified Perceptual Hashing via Robust Training

Yuchen Yang, Qichang Liu*, Christopher Brix1, Huan Zhang2, and Yinzhi Cao
{yc.yang, qliu85, yinzhi.cao}@jhu.edu,

brix@cs.rwth-aachen.de, huan@huan-zhang.com
The Johns Hopkins University, 1RWTH Aachen University, 2UIUC

A Artifact Appendix

A.1 Abstract
CertPhash is the first certified perceptual hashing (PHash) sys-
tem with robust training. CertPhash includes three different
optimization terms: anti-evasion, anti-collision, and function-
ality. The anti-evasion term establishes an upper bound on
the hash deviation caused by input perturbations, the anti-
collision term sets a lower bound on the distance between
a perturbed hash and those from other inputs, and the func-
tionality term ensures that the system remains reliable and
effective throughout robust training. This artifact includes the
source code, dataset, and models, along with instructions to
set up the environment, implement, and evaluate CertPHash.

A.2 Description & Requirements
A.2.1 How to access

The code and scripts used in our paper are avail-
able in the following GitHub repository, at commit
59ed6e6441e1ba06d09631ec900799eb204079ef: https:
//github.com/Yuchen413/CertPhash/tree/main. It is
also available at the Zenodo stable URL https://zenodo.
org/records/14740844, with the latest release tag.

A.2.2 Hardware dependencies

Our artifacts require a Linux machine with 64GB of RAM and
a GPU with 40 GB of graphics memory. We use an NVIDIA
A100-PCIE-40GB GPU with CUDA Version 12.1 and Driver
Version 530.30.02.

A.2.3 Software dependencies

We use Python 3.10 and Conda for package management. The
required dependencies can be installed using:

conda create -n certphash python=3.10 -y
conda activate certphash

*This work was done when Qichang Liu was a summer intern at JHU.

pip install -r requirements.txt

Additionally, auto_LiRPA dependencies must be installed:

git clone git@github.com:Verified-Intelligence/
auto_LiRPA.git

cd auto_LiRPA
python setup.py install

A.2.4 Artifact hierarchy

The artifact includes the following three folders:

• generate_phash: PHash generation using existing algo-
rithms.

• train_verify: Train and verify the CertPhash.
• attack: Functionality and empirical attack evaluations.

A.2.5 Datasets

We use datasets COCO, MNIST, CelebA, and NSFW-56K
for training and evaluation. Due to ethical concerns, we can-
not provide a direct download link for NSFW-56K, please
follow the steps in the README of our GitHub repository.
The other datasets can be downloaded at this link, which in-
cludes images and perceptual hashes used in our experiments.
After downloading, unzip the file, name the folder as data
and replace the existing train_verify/data folder with the
downloaded one.

Then perform the following procedure for the datasets you
need:

• COCO: Download images from this ADDITIONAL link
and unzip them as coco100x100. Place the folder under
train_verify/data.

• MNIST: Ensure a folder named mnist containing images
and hashes is present.

• CelebA: Ensure a folder named celaba_random is present.

Please double check that the downloaded data files follow
the structure as specified in ./train_verify/data/put\
_data_here_follow_this.txt:

https://github.com/Yuchen413/CertPhash/tree/main
https://github.com/Yuchen413/CertPhash/tree/main
https://zenodo.org/records/14740844
https://zenodo.org/records/14740844
https://drive.google.com/file/d/11LBjSRM-tqhJOKcRbxO8_8ZEabPdepUD/view?usp=sharing
https://github.com/anishathalye/ribosome/releases/download/v1.0.0/coco100x100.tar.gz

-coco100x100
-.jpg

-coco100x100_val
-.jpg

-coco-train.csv
-coco-val.csv
-mnist

-testing
-.jpg

-training
-.jpg

-mnist_test.csv
-mnist_train.csv

-celeba_random
-.jpg

A.2.6 Models

Our certified robust trained models, adversarial trained mod-
els and non-robust trained models have been placed
in https://drive.google.com/drive/folders/
1b7RbO-uDdlvsxgsxE4H-tjrdGVx7pVRu?usp=sharing
In order to use our pretrained models, download the
folder named saved_models and replace the existing
./train_verify/saved_models with the downloaded
version.

A.3 Set-up
A.3.1 Installation

The following steps set up the Conda environment for our
Github repository:

conda create -n certphash python=3.10 -y
conda activate certphash
pip install -r requirements.txt

A.3.2 Basic Test

To verify installation:

bash ./train_verify/test_env.sh

The expected output for
./train_verify/test_env.sh should be similar to
./train_verify/test/train_log.txt, a.k.a. something
like the following:

Epoch 1, learning rate [0.0005], dir
one_epoch_test

[1]: eps=0.00000048 active=0.3465 inactive
=0.6532 Loss=0.4681 Rob_Loss=0.4681 Err
=1.0000 Rob_Err=1.0000 L_tightness=0.5494

L_relu=0.0023 L_std=0.8852 loss_reg=0.5518
grad_norm=15.2293 wnorm=13.1858 Time=0.0517

...
Test without loss fusion
[1]: eps=0.00000048 active=0.3509 inactive

=0.6491 Loss=0.4642 Rob_Loss=0.4642 Err
=1.0000 Rob_Err=1.0000 L_tightness=0.0000
L_relu=0.0000 L_std=0.8729 loss_reg=0.0000
wnorm=14.8170 Time=0.0218

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): CertPHash maintains hash functionality across differ-
ent datasets, achieving high ROC-AUC scores. This is
proven by experiments (E1-1, E1-2) described in our pa-
per’s Section 6.1 whose results are illustrated in Figure
2.

(C2): CertPHash maintains certified robustness against eva-
sion and collision attacks, achieving high Certified No
Evasion Rates and Certified No Collision Rates. This
can be verified through the experiments (E2-1, E2-2) in
Table 2 and Table 3 described in our paper’s Section 6.2.

A.4.2 Experiments

(E1-1) Functionality Evaluation for Trained PHash Mod-
els

Preparation: Install dependencies and datasets.

Execution: Navigate to attack/ and run the following
scripts. An example is provided below.

python benign0_func_check.py --dataset=’
coco_val’ --target=’
photodna_nn_cert_ep1’ --model=’../
train_verify/saved_models/
coco_photodna_ep1/ckpt_best.pth’

The expected output of the console contains the names
of all the transformations:

Original: 100%|--------------------| 1/1
[00:00<00:00, 22310.13it/s]

Rotate: 100%|--------------------| 15/15
[00:00<00:00, 32099.27it/s]

...

It will take around five minutes to calculate the PHash
from different levels of different transformations. The
generated hashes will be saved under folder ./attack/
func_logs/coco_val_photodna_nn_cert_ep1.
Then calculate the ROC-AUC via:

https://drive.google.com/drive/folders/1b7RbO-uDdlvsxgsxE4H-tjrdGVx7pVRu?usp=sharing
https://drive.google.com/drive/folders/1b7RbO-uDdlvsxgsxE4H-tjrdGVx7pVRu?usp=sharing

python benign0_func_AUC.py --dataset=’
coco_val’ --target=’
photodna_nn_cert_ep1’

The expected output from the console contains ROC-
AUC of transformations tested in our papers RQ1. For
instance, the output for the Hue transformation should
be as follows:

...
hue: -180 -150 -120 -90

-60 -30 0 30 60
90 120 150

ROC AUC: 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000

Mean ROC AUC: 1.0000, Std ROC AUC: 0.0000
...

The full results will be saved in ./attack/
func_logs/coco_val_photodna_nn_cert_ep1/
coco_val_results.txt. These results should align
with our paper’s RQ1.

(E1-2) Certified Robust PHash Training:

Preparation: Install dependencies and datasets.

Execution: Instead of using our trained model, you
can also train models from scratch. Navigate to
train_verify folder and run train.py with the ro-
bust training configuration file. An example of robust
training with a perturbation epsilon of 0.0078 on COCO
dataset is provided below.

python train.py --method=fast --config=
config/coco.crown-ibp.json \

--eps=0.0078 --dir=saved_models/
coco_photodna_ep2 \

--scheduler_opts=start=2,length=80 \
--lr-decay-milestones=120,140 --lr-

decay-factor=0.2 \
--num-epochs=160 --model=’resnet_v5’ --

lr=5e-4

Results: The robustly trained model will be saved un-
der saved_models/. You can later use this model for
verification.

(E2-1): Certified No Evasion Rate (CNER) Verification:

Preparation: Install dependencies and datasets.

Execution: Run verify_evasion.py with appropri-
ate parameters. See the below example with veri-
fying a model trained with ε = 8/255 under veri-
fying noises ε = 8/255:

python verify_evasion.py --data=
coco \

--epsilon=0.0312 --model=’
saved_models/coco_photodna_ep8
/ckpt_best.pth’

Results: Compare the computed CNER values with
those reported in the paper.

(E2-2) Certified No Collision Rate (CNCR) Verification:

Preparation: Install dependencies and datasets.

Execution: Run verify_preimage.py. An example
is provided below.

python verify_preimage.py

Results: Compare the CNCR values with those reported
in the paper.

A.5 Notes on Reusability
CertPHash can be adapted to other datasets and hashing
models with minor modifications to the data-loading code.
Additionally, we provide the implementation and evalua-
tion scripts for our non-robust and adversarial-robust trained
PHash model, as well as existing PHash systems, including
PhotoDNA, PDQ, and NeuralHash. (Note that we cannot di-
rectly provide the extracted algorithms or models due to copy-
right restrictions.) More details can be found in the README
of our GitHub repository.

A.6 Version
This submission follows the LaTeX template for Artifact Eval-
uation V20231005. Further details can be found at https:
//secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Artifact hierarchy
	Datasets
	Models

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

