
USENIX Security ’25 Artifact Appendix: Enabling Low-Cost Secure
Computing on Untrusted In-Memory Architectures

Sahar Ghoflsaz Ghinani, Jingyao Zhang, Elaheh Sadredini
University of California, Riverside

{sghof001, jzhan502, elahehs}@ucr.edu

A Artifact Appendix

A.1 Abstract
Our artifact contains all necessary source codes and scripts
for evaluating our proposed security scheme. This paper lever-
ages Multi-Party Computation (MPC) techniques, specifically
arithmetic secret sharing, and Yao’s garbled circuits, to se-
curely outsource bandwidth-intensive computation to PIM.
Additionally, we employ precomputation optimizations to
prevent the CPU’s portion of the MPC from becoming a bot-
tleneck. We provided all the source codes and scripts for
evaluating our scheme using UPMEM, the first publicly avail-
able PIM, over four data-intensive applications: Multilayer
Perceptron inference (MLP), Deep Learning Recommenda-
tion Model inference (DLRM), linear regression training, and
logistic regression training. This artifact allows researchers to
reproduce our results, explore this area further, and expand
our work. With this artifact, researchers can regenerate the per-
formance results for UPMEM-Precompute-C(V), UPMEM-
Runtime-C(V), and UPMEM-Runtime-A(2Y)-C(V), as pre-
sented in figures 13 to 18.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our research does not compromise user privacy or safety, and
all data used in our experiments is either synthetic or randomly
generated. Therefore, no Personally Identifiable Information
(PII), sensitive data, or human subjects were involved.

A.2.2 How to access

The code is open-source and hosted on a GitHub public repos-
itory to facilitate reuse. Additionally, it is archived on Zenodo.
We encourage other researchers to explore, reproduce, and
modify our code, provided they give appropriate credit. We
always recommend using the latest Zenodo release via the
provided concept DOI. However, we have included the link to
the initial version for consistency throughout our publication.

• Zenodo initial version: zenodo.org/records/14736864.
• Zenodo concept DOI: zenodo.org/records/14736863.

• GitHub: github.com/Secure-UPMEM/SecUPMEM.git.

A.2.3 Hardware dependencies

To evaluate our method, we utilize UPMEM PIM hardware,
which primarily consists of standard DDR4-2400 DIMMs
integrated with DPUs. Our setup includes 20 PIM-enabled
DIMMs, providing a total of 160 GB of MRAM and 2560
DPUs working in parallel at a clock frequency of 350 MHz.
The host server for the UPMEM system is equipped with a
2-socket Intel Xeon Silver 4110 CPU. To accurately repro-
duce our results, access to the actual hardware is necessary.
UPMEM’s PIM data centers are accessible upon request at
https://www.upmem.com/developer.

A.2.4 Software dependencies

All the implemented applications require the UPMEM SDK,
which can be installed based on the hardware specifications
and is accessible at https://sdk.upmem.com. For depen-
dencies related to MLP, DLRM, logistic regression, and linear
regression, please refer to our baseline implementations as
our work is built upon them.

• MLP (Link)
• DLRM (Link 1, Link 2)
• Logistic and Linear Regression (Link 1, Link 2)

A.2.5 Benchmarks

Our scheme is evaluated using MLP inference, DLRM infer-
ence, logistic regression training, and linear regression train-
ing. To evaluate our implementation, we use randomly gener-
ated inputs.

A.3 Set-up
A.3.1 Installation

To run this artifact on your local device, the UPMEM SDK
must first be installed, which is available at https://sdk.
upmem.com. However, as previously mentioned, reproducing
our results requires access to real hardware (20 UPMEM
PIMs) rather than the simulator. Once the UPMEM SDK is

https://zenodo.org/records/14736864
https://zenodo.org/records/14736863
https://github.com/Secure-UPMEM/SecUPMEM.git
https://www.upmem.com/developer.
https://sdk.upmem.com.
https://github.com/CMU-SAFARI/prim-benchmarks
https://github.com/UBC-ECE-Sasha/PIM-Embedding-Lookup
https://github.com/upmem/PIM-Embedding-Lookup/tree/multicol/upmem
https://github.com/CMU-SAFARI/pim-ml
https://github.com/CMU-SAFARI/prim-benchmarks
https://sdk.upmem.com
https://sdk.upmem.com


installed, the artifact can be downloaded from GitHub and
Zenodo.

A.3.2 Basic Test

Script run_functionality.sh, in the root directory, can be
used to perform a simple functionality check. This file ex-
ecutes a basic test on all the applications sequentially and
outputs execution time. To run a specific application, the
run_functionality.sh script in the corresponding folder can be
executed.

A.4 Evaluation workflow
A.4.1 Major Claims

Our major claim is as follows:
(C1): Compared to a secure CPU implementation, our frame-

work achieves speedups of 14.66×, 9.80×, 2.64×, and
5.85× for MLP inference, DLRM inference, Linear Re-
gression training, and Logistic Regression training, re-
spectively. This is proven by the experiment (E1) de-
scribed in Section 7.1 whose results are illustrated in
Figures 14, 15, 16, 18.

A.4.2 Experiments

(E1): [30 human-minutes + 2.5 compute-hour + 32GB disk]:
How to: Our results can be reproduced by following
the three steps below.
Preparation: Install the UPMEM SDK, as described in
Section A.2.4, then clone our artifact.
Execution: Script ./run_reproduce.sh, in the root di-
rectory, can be used to regenerate our results. This
file executes all the applications with our configu-
ration sequentially and outputs execution time for
UPMEM-Precompute-C(V), UPMEM-Runtime-C(V),
and UPMEM-Runtime-A(2Y)-C(V), as presented in Fig-
ures 13 to 18. To reproduce the results for a specific
application, the ./run_reproduce.sh script in the corre-
sponding folder can be executed.
This script compiles and links the host and DPU source
codes for a specific number of DPUs and tasklets. There
is a Makefile for each application that facilitates the
compilation and linking of the source codes.
Results: After running our script, the final execution
time is reported. Table 1 explains the different notations
used for manually determining execution times. The
execution time is calculated using the formula provided
below:

PIM Time=CPU −DPU +PIM kernel+DPU −CPU

Kernel time = Max[CPU Time,PIM Time]

Execution time = Kernel time+Merge+Veri f ication

Table 1: List of timing notations
Timing notations Explanation

CPU −DPU CPU to DPUs transfer time
DPU −CPU DPUs to CPU transfer time
PIM kernel Kernel execution time on DPUs
CPU Time Kernel execution time on CPU
Kernel time The maximum of CPU Time and PIM Time

Merge Merging time of CPU and PIM results
Veri f ication Verification time

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://github.com/Secure-UPMEM/SecUPMEM.git
https://zenodo.org/records/14736863
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


