ARTIFACT ARTIFACT
EVALUATED EVALUATED

yusenix yusenix

ASSOCIATION @ Association

AVAILABLE

USENIX Security ’25 Artifact Appendix: APPATCH: Automated Adaptive
Prompting Large Language Models for Real-World Software Vulnerability
Patching

Yu Nong!, Haoran Yang?, Long Cheng?, Hongxin Hu!, and Haipeng Cai!

YUniversity at Buffalo, >Washington State University, > Clemson University
1{yunong,hongxinh,haipengc}@buffalo.edu,zhaoran.yangZ@wsu.edu,3lcheng2@clemson.edu

A Artifact Appendix

A.1 Abstract

APPATCH is an automated LLM-based patching system that
elicits LLMs to effectively reason about vulnerable code be-
haviors with vulnerability semantics reasoning and adaptive
prompting. We provide access to the APPATCH datasets, re-
sults, source code, and a functional Docker image described
in the paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our research is focused on the development and evaluation of
methods for patching software vulnerabilities on the source
code level, which does not have any risk for evaluators when
executing the artifact with regards to the machines’ security,
data privacy, or other ethical concerns.

A.2.2 How to access

‘We have made the APPATCH datasets, results, and source
code publicly available on Zenodo: https://zenodo.org
/records/14741018 with a functional Docker image on
Docker Hub: https://hub.docker.com/repository/docker/g2ecb
/appatch-demo/.

A.2.3 Hardware dependencies
Our artifact can run on machines with at least 20GB spare
disk space and 16GB CPU memory.

A.2.4 Software dependencies

Our functional APPATCH image requires Docker to set up
and execute.

“Haipeng Cai is the corresponding author.

A.2.5 Benchmarks

Considering the high cost of the commercial LLMs, we only
provide 16 interprocedural samples for the functional badge
evaluation. For the complete datasets and results, please refer
to appatch.zip uploaded on Zenodo.

A.3 Set-up
A.3.1 Installation

We have uploaded the functional Docker image to Docker
hub. To pull and install the image, simply run:

$ docker run -it -d --name appatch-demo
g2ecb/appatch-demo bash

After installing the image, enter the container with:
$ docker exec -it appatch-demo bash

After entering the Docker container, please first provide the
keys in the api_keys.json file.

$ cd ~

$ vi api_keys.json

A.3.2 Basic Test

In the home directory (/root/) of the container, run the auto-
matic script provided for the whole pipeline:

$ source run_all.sh

If the API keys are set correctly, you will see the script run
without reporting model related errors.


https://zenodo.org/records/14741018
https://zenodo.org/records/14741018
https://hub.docker.com/repository/docker/g2ecb/appatch-demo/
https://hub.docker.com/repository/docker/g2ecb/appatch-demo/

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): APPATCH is able to generate vulnerability patches
with its key components: (1) Semantics-Aware Scop-
ing (Slicing), (2) Vulnerability Semantics Reasoning
(Root Cause Analysis), (3) Dynamic Adaptive Patch
Generation, and (4) Multi-Faceted Patch Validation. We
demonstrate the claim through the demo Docker image
in Experiment (E1).

A.4.2 Experiments

(E1) Patch Generation (/ human-minute + 20 compute-
minutes):
How to: Run the code in the execution section below.
Preparation: Set up the API keys described in Section
A.3.1. Then, go to the home directory of the container.
Execution: Run the automatic script provided for the
whole pipeline:

$ source run_all.sh

Results: After running the pipeline, the generated
slices, root cause analysis, patches, and validation re-
sults are stored in interprocedural_sample_slices,
root_cause_analysis, generated_patches, and
generated_patches_<model-name>_valid folders
in /root/appatch/. By opening any generated files
in root_cause_analysis and generated_patches,
you can see results similar to Figure 5 and Figure 7 in
the paper.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


