
USENIX Security ’25 Artifact Appendix: Voluntary Investments,
Mandatory Minimums, or Cyber Insurance: What Minimizes Losses?

Adam Hastings

A Artifact Appendix

A.1 Abstract
These artifacts contain the following:

• The code needed to perform the empirical work in our
paper

• The datasets needed to reproduce the figures in the paper

• The code (and runtime environment) needed to run the
simulations and reproduce the data used in the paper

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

We do not forsee any security, privacy, or ethical concerns
with running this artifact.

A.2.2 How to access

The codebase for this work is maintained at
http://github.com/columbiacastl/monte-carlo-security-
games/. We also provide a stable reference via Zenodo at
https://doi.org/10.5281/zenodo.14728685.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

We have tried to make our artifacts as portable as possible. To
this end we recommend installing the following:

1. Docker: https://docs.docker.com/engine/install/

2. Some Linux command line tools: tar, curl, git

We recommend using a Linux environment for artifact
evaluation.

A.2.5 Benchmarks

None.

A.3 Set-up

We provide two methods of installation. The first—Zenodo—
contains a stable artifact and all data used in the paper. This
is necessary for a strict verification of Experiment E2 below.
You may also install via GitHub which contains code but not
data. Via the GitHub installation, you may reproduce the data
used in the paper (Experiment E3) and then verify that the
data matches the data in the paper (Experiment E2).

A.3.1 Installation via Zenodo

1 # download the containerized application
2 wget https://zenodo.org/records /15042431/ files/

artifacts.tar.gz
3

4 # extract and change directories
5 tar -xzvf artifacts.tar.gz
6 cd monte -carlo -security -games/

A.3.2 Installation via GitHub

1 git clone https://github.com/columbia -castl/monte -
carlo -security -games.git

2 cd monte -carlo -security -games/

A.3.3 Building the Docker container

If you have a Docker environment, you can build a Docker
image from the Dockerfile provided in the repository. This
step may take 10 minutes to complete.

1 # pull a stable version of ubuntu
2 sudo docker pull ubuntu :22.04
3

4 # build the docker image from the Dockerfile
5 sudo docker build -t ae_image .
6

7 # run the docker image in an interactive container
8 sudo docker run -it ae_image

A.3.4 Basic Test

Once you have a shell to the running docker container, execute
the following within the container:

https://github.com/columbia-castl/monte-carlo-security-games/
https://github.com/columbia-castl/monte-carlo-security-games/
https://doi.org/10.5281/zenodo.14728685
https://docs.docker.com/engine/install/


1 cd root/simulator/
2

3 # build the simulator
4 make release
5

6 # run a small input
7 ./run/release/run_games configs/fullsize_tiny.json

You may be prompted to overwrite the existing logfile
for the input config fullsize_tiny.json. If so type "y" to
proceed. The output should look something like this:

1 Creating logs/fullsize_tiny.csv
2

3 This file already exists: logs/fullsize_tiny.csv
4 Do you want to replace it (Y)? Or append to it (A)

? Y/A/n
5 >> y
6 started 1 games at Tue Feb 25 22:27:50 2025
7 finished computation at Tue Feb 25 22:28:02 2025
8 elapsed time: 11.2933s

A.4 Evaluation workflow

A.4.1 Major Claims

(C1) The curve fittings and regressions in Section 3 of the
paper follow from the data acquired.

(C2) The model output data generates the figures in Sections
5–10 of the paper.

(C3) The model produces data similar to the data used in
(C2).

A.4.2 Experiments

All experimental verification will happen inside the running
docker container.
(E1): Verifying (C1) [10 human-minutes + 1 compute-

minute]: ...

1 cd /root/parameter -calcs/scripts
2

3 # Re-create wealth regression (Section 3.2)
4 # parameters will be included in the output
5 # mu=1.1356, sigma=-1.1184
6 # other outputs located in ../figures/

wealthfitting
7 python3 fit_marketcap_revenue_curves.py
8

9 # Re-create Figure 1 (Section 3.3)
10 # output will be in ../figures/

ransom_regression/
11 python3 ransom_regression_plot.py
12

13 # Re-create security posture regression
14 # output will be in ../figures/posture_fitting
15 python3 curve_fit_posture.py
16

17 # Re-create Figure 2 (Secton 3.6)
18 # output will be in /root/parameter -calcs/

figures/erf/
19 python3 plot_erf.py

(E2): Verifying (C2) [10 human-minutes + 10 compute-
minute]: ...

1 cd /root/simulator/scripts/
2

3 # Generate baseline model figures (Section 5)
4 # outputs (Figures 3--6) located figures/

fullsize_short/
5 python3 run_all.py ../logs/fullsize_short.csv
6

7 # Generate the sensitivity analysis
8 # output (Figure 7) located in figures/

sensitivity_analysis/
sensitivity_analysis_MAX_ITERATIONS =500*

9 python3 plot_sensitivity_analysis.py
10

11 # Generate figures for the mandated securty
investments model

12 # outputs (Figure 8--10) in figures/
fullsize_short_MANDATORY_INVESTMENT*/

13 python3 ./run_all.py ../logs/
fullsize_short_MANDATORY_INVESTMENT
\=0.01.csv

14 python3 ./run_all.py ../logs/
fullsize_short_MANDATORY_INVESTMENT
\=0.02.csv

15 python3 ./run_all.py ../logs/
fullsize_short_MANDATORY_INVESTMENT
\=0.03.csv

16 python3 ./run_all.py ../logs/
fullsize_short_MANDATORY_INVESTMENT
\=0.04.csv

17 python3 ./run_all.py ../logs/
fullsize_short_MANDATORY_INVESTMENT
\=0.05.csv

18

19

20 # Generate figures for the mandatory insurance
model

21 # outputs (Figure 11--12) in figures/
fullsize_short_mandatory_insurance

22 python3 ./run_all.py ../logs/
fullsize_short_mandatory_insurance.csv

23

24 # Generate figures for the actuarially fair
model

25 # outputs (Figures 13--14) in figures/
fullsize_short_selfless_insurers

26 run_all.py ../logs/
fullsize_short_selfless_insurers.csv

27

28 # Generate figures for model with growth
29 # outputs (Figures 15--16) in figures/

fullsize_short_with_asset_growth_GROWTH_RATE
=*/

30 python3 run_all.py ../logs/
fullsize_short_with_asset_growth_GROWTH_RATE
\=0.001.csv

31 python3 run_all.py ../logs/
fullsize_short_with_asset_growth_GROWTH_RATE
\=0.002.csv

32 python3 run_all.py ../logs/
fullsize_short_with_asset_growth_GROWTH_RATE
\=0.01.csv

33 python3 run_all.py ../logs/
fullsize_short_with_asset_growth_GROWTH_RATE
\=0.02.csv

34 python3 run_all.py ../logs/



fullsize_short_with_asset_growth_GROWTH_RATE
\=0.04.csv

(E3): Verifying (C3) [1 human-hour + 20 compute-hours]:
...
To reproduce the data used in (C2), you can re-run the
simulator on all inputs.

1 cd /root/simulator/
2 make release # build the release version if

you haven ’t already
3

4 # Run the baseline model
5 ./run/release/run_games configs/fullsize_short

.json
6

7 # Run the parameter sweeps for sensitivty
analysis

8 # NOTE: the sweep simulations require the
debug binary for serial execution!

9 ./run/debug/run_games configs/sweeps/
MAX_ITERATIONS =500/
sweep_ATTACKS_PER_EPOCH.json

10 ./run/debug/run_games configs/sweeps/
MAX_ITERATIONS =500/
sweep_CTA_SCALING_FACTOR.json

11 ./run/debug/run_games configs/sweeps/
MAX_ITERATIONS =500/ sweep_DEPRECIATION.
json

12 ./run/debug/run_games configs/sweeps/
MAX_ITERATIONS =500/ sweep_INEQUALITY.json

13 ./run/debug/run_games configs/sweeps/
MAX_ITERATIONS =500/
sweep_INVESTMENT_SCALING_FACTOR.json

14 ./run/debug/run_games configs/sweeps/
MAX_ITERATIONS =500/ sweep_LOSS_RATIO.json

15 ./run/debug/run_games configs/sweeps/
MAX_ITERATIONS =500/ sweep_NUM_QUOTES.json

16 ./run/debug/run_games configs/sweeps/
MAX_ITERATIONS =500/ sweep_RANSOM_B0.json

17 ./run/debug/run_games configs/sweeps/
MAX_ITERATIONS =500/ sweep_RANSOM_B1.json

18 ./run/debug/run_games configs/sweeps/
MAX_ITERATIONS =500/
sweep_RECOVERY_COST_BASE.json

19 ./run/debug/run_games configs/sweeps/
MAX_ITERATIONS =500/
sweep_RECOVERY_COST_EXP.json

20 ./run/debug/run_games configs/sweeps/
MAX_ITERATIONS =500/
sweep_RETENTION_REGRESSION_FACTOR.json

21

22

23 # Run the mandatory investment simulations
24 ./run/release/run_games configs/

fullsize_short_MANDATORY_INVESTMENT =0.01.
json

25 ./run/release/run_games configs/
fullsize_short_MANDATORY_INVESTMENT =0.02.
json

26 ./run/release/run_games configs/
fullsize_short_MANDATORY_INVESTMENT =0.03.
json

27 ./run/release/run_games configs/
fullsize_short_MANDATORY_INVESTMENT =0.04.
json

28 ./run/release/run_games configs/
fullsize_short_MANDATORY_INVESTMENT =0.05.

json
29

30

31 # Run the mandatory insurance simulations
32 ./run/release/run_games configs/

fullsize_short_mandatory_insurance.json
33

34 # Run the actuarially fair simulations
35 ./run/release/run_games configs/

fullsize_short_selfless_insurers.json
36

37 # Run the simluations with growth
38 ./run/release/run_games configs/

fullsize_short_with_asset_growth_GROWTH_RATE
=0.001.json

39 ./run/release/run_games configs/
fullsize_short_with_asset_growth_GROWTH_RATE
=0.002.json

40 ./run/release/run_games configs/
fullsize_short_with_asset_growth_GROWTH_RATE
=0.01.json

41 ./run/release/run_games configs/
fullsize_short_with_asset_growth_GROWTH_RATE
=0.02.json

42 ./run/release/run_games configs/
fullsize_short_with_asset_growth_GROWTH_RATE
=0.04.json

A.5 Notes on Reusability
In addition to the above arficat assets, we also include a live
online demo of our model. This allows for users to run the
model on custom inputs via a web browser and is much more
accessible than the containerized version above. However, for
usability reasons it only runs one instance of the game at a
time and so it would be impractical to use it to fully repro-
duce the work above. However, it provides a low-resolution
approximation with may be useful regardless. It is available
here: https://cyberspending.cs.columbia.edu/

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://cyberspending.cs.columbia.edu/
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation via Zenodo
	Installation via GitHub
	Building the Docker container
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


