
USENIX Security ’25 Artifact Appendix: Lost in the Mists of Time:
Expirations in DNS Footprints of Mobile Apps

Johnny So
Stony Brook University

Iskander Sanchez-Rola
Norton Research Group

Nick Nikiforakis
Stony Brook University

A Artifact Appendix

This artifact appendix is meant to be a self-contained docu-
ment which describes a roadmap for the evaluation of your
artifact. It should include a clear description of the hardware,
software, and configuration requirements. In case your arti-
fact aims to receive the functional or results reproduced badge,
it should also include the major claims made by your paper
and instructions on how to reproduce each claim through
your artifact. Linking the claims of your paper to the artifact
is a necessary step that ultimately allows artifact evaluators
to reproduce your results.

Please fill all the mandatory sections, keeping their titles
and organization but removing the current illustrative content,
and remove the optional sections where those do not apply to
your artifact.

A.1 Abstract

In this work, we present the first large-scale analysis of mobile
app dependencies through a dual perspective accounting for
time and version updates, with a focus on expired domains.
First, we detail a methodology to build a representative cor-
pus comprising 77,206 versions of 15,124 unique Android
apps. Next, we extract the unique eTLD+1 domain dependen-
cies — the “DNS footprint” — of each APK by monitoring
the network traffic produced with a dynamic, UI-guided test
input generator and report on the footprint of a typical app.
Using these footprints, combined with a methodology that de-
duces potential periods of vulnerability for individual APKs
by leveraging passive DNS, we characterize how apps may
have been affected by expired domains throughout time. Our
findings indicate that the threat of expired domains in app
dependencies is nontrivial at scale, affecting hundreds of apps
and thousands of APKs, occasionally affecting apps that rank
within the top ten of their categories, apps that have hundreds
of millions of downloads, or apps that were the latest version.
Furthermore, we uncovered 40 immediately registrable do-
mains that were found in app footprints during our analyses,
and provide evidence in the form of case studies as to their
potential for abuse. We also find that even the most security-
conscious users cannot protect themselves against the risk of
their using an app that has an expired dependency, even if

they can update their apps instantaneously.
As part of the artifact evaluation, we release datasets and

analysis notebooks that enable reviewers to reproduce the
figures and tables that are presented in the text. Additionally,
we release a version of the main app analysis infrastructure
to enable future work.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There are no security, privacy, and ethical concerns associated
with running these artifacts. In terms of running processes,
running the Jupyter notebooks requires a running Jupyter
server, and running the Cuttlefish infrastructure spawns var-
ious disposable components. However, we do recommend
using a local firewall (e.g., ufw) if running the Cuttlefish in-
frastructure, as it will spawn Cuttlefish virtual devices that
can be manipulated over the network via adb. The only host-
level settings that are modified come from the Cuttlefish in-
frastructure, which provides scripts to manipulate iptables
and ufw rules (iptables.sh and ufw_modify_cvd.sh in
the /cuttlefish/scripts directory, respectively). These
scripts enable all traffic from the Cuttlefish virtual devices to
correctly pass through ufw (if it is enabled), and route DNS
traffic from the Cuttlefish devices to a specified DNS server.

A.2.2 How to access

We provide access to our artifact on Zenodo at the following
link: https://doi.org/10.5281/zenodo.14737144. The artifact
will be updated with new versions at this URL according to
the discussion of the artifact evaluation period.

A.2.3 Hardware dependencies

The only hardware requirements are imposed by the Android
Cuttlefish infrastructure components, which require CPU sup-
port for kvm.

For convenience, we provide reviewers with ac-
cess to a VM which we have pre-configured with
all necessary dependencies, and installed the artifacts at
/home/ubuntu/artifacts. In addition, this VM comes with
the sample of APKs used for the Cuttlefish experiments

https://doi.org/10.5281/zenodo.14737144

(which unfortunately cannot be publicly shared in the artifact
itself). We recommend using the provided VM as a reference
as there are various dependencies required by the Cuttlefish
infrastructure components.

A.2.4 Software dependencies

These artifacts were exclusively developed and tested on an
Ubuntu 20.04 machine. The Jupyter notebooks should work
on any platforms that support Python, and the Cuttlefish-based
infrastructure should work on most Linux distributions. If you
would like to run the analysis notebooks, the dependencies
are fairly simple. However, if you would like to set up your
own testing environment with the Cuttlefish virtual devices,
there are additional dependencies that need to be installed, and
certain components may not be cross-platform compatible
(e.g., the script that uses iptables to route DNS traffic from
Cuttlefish devices).

To run the Jupyter Notebooks, the only requirement
is a Python environment with all the dependencies in
/requirements.txt.

To run the Cuttlefish app analysis infrastructure, there are
additional requirements:

1. Docker Engine for the DNS servers and HTTPS proxies

2. Android Cuttlefish - which can be in-
stalled using cuttlefish_setup.sh and
cuttlefish_download_images.sh in the
/cuttlefish/scripts directory

• NOTE: kvm needs to be supported by your CPU

3. The fork of DroidBot in droidbot.tar.gz installed in
the Python environment

• After inflating the droidbot folder, it
can be installed via pip install -e
/path/to/droidbot

4. Frida server - which can be installed
by download_frida_server.sh in the
/cuttlefish/scripts directory

5. iptables to route DNS traffic from the Cuttlefish de-
vices

6. [recommended] ufw as Cuttlefish devices expose addi-
tional ports

7. [recommended] a desktop environment / VNC server
(e.g., turbovnc) to interact with the Cuttlefish devices

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

As Zenodo records only support flat files, the artifacts have
been compressed.

1. Download the data artifacts from Zenodo at
https://doi.org/10.5281/zenodo.14737144 and en-
sure they are all in the same directory.

2. chmod +x inflate.sh && chmod +x deflate.sh

3. /inflate.sh to inflate the artifacts

Depending on whether you would like to only run the
analyses with Python or run the Cuttlefish infrastructure, you
will need to install different dependencies. The steps below
outline the installation steps for both cases.
Python Environment [Jupyter and Cuttlefish]. The offi-
cial downloads can be found on the Python site, but Python is
likely to have been pre-installed on your machine. We recom-
mend creating a separate virtual environment for the required
Python dependencies for this artifact (see this for a primer on
virtual environments).

1. After setting up your Python virtual environment, please
install the packages in /requirements.txt with the
corresponding commands for your environment manager
(e.g., pip install requirements.txt).

The below dependencies are only required to test the Cut-
tlefish infrastructure.
Python Environment [Cuttlefish, required]. After in-
stalling your Python environment as described above, you
will also need to install the provided fork of DroidBot to use
in the Cuttlefish infrastructure. To do so, please inflate the
artifacts, and run:

pip install -e /path/to/droidbot-fork

inside your Python virtual environment.
Docker [Cuttlefish, required]. The official setup instruc-
tions can be found at the Docker docs site.

1. Docker Engine can be installed on Linux with
docker_setup.sh in the /cuttlefish/scripts di-
rectory.

2. Log out and log back in so that your group membership
is re-evaluated to run docker commands without sudo.

Android Cuttlefish [Cuttlefish, required]. The official
setup instructions can be found at the Android Open Source
site.

1. Cuttlefish packages can be set up on Linux with
cuttlefish_setup.sh in the scripts directory.

https://docs.docker.com/engine/install/
https://source.android.com/docs/devices/cuttlefish/get-started
https://github.com/frida/frida
https://doi.org/10.5281/zenodo.14737144
https://www.python.org/downloads/source/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://docs.docker.com/engine/install/ubuntu/
https://source.android.com/docs/devices/cuttlefish/get-started
https://source.android.com/docs/devices/cuttlefish/get-started

2. Download the following Cuttlefish Android 11 artifacts
from aosp-android11-gsi@11718355 to some directory
(e.g., $HOME/cf-images/11718355 which is created by
the prior script):

(a) aosp_cf_x86_64_phone-img-11718355.zip
for the Android image

(b) cvd-host_package.tar.gz for the host cuttle-
fish utilities

3. Extract the downloaded artifacts by running:

tar -xvf cvd-host_package.tar.gz
unzip aosp_cf_x86_64_phone-img-11718355.zip

4. Then, add the absolute path of the
cf-images/android11/bin to your PATH (it is
recommended to add to do so in a persistent manner)

Desktop Environment/VNC [Cuttlefish, recommended].
If you are working in a remote/headless environment, it is rec-
ommended to install a desktop environment and a VNC server
so that you can visually monitor and control the Cuttlefish
virtual devices with a browser and WebRTC.

It should be possible to connect to a remote WebRTC pro-
cess from your local computer without installing a desktop
environment on the machine running the Cuttlefish infras-
tructure (e.g., with SSH port tunneling), but we encountered
problems with this and found that installing the desktop envi-
ronment was simpler.

If you need help, here is an example guide on how to install
TightVNC with Xfce4 on Ubuntu.

Configuration. After installing the required dependencies,
make sure to update the configuration for the desired com-
ponents. For the Jupyter notebooks, the main configuration
file is /analysis/.parameters.py, but this should not re-
quire any changes as long as the directory structure was not
modified after inflating the artifacts.

For the Cuttlefish infrastructure, the main configuration file
is /cuttlefish/.env. In particular, make sure to change the
following variables:

1. DIR_BASE to the absolute file path to the inflated
/data/cuttlefish directory

2. DIR_ADB_FILES to the absolute file path to the inflated
/cuttlefish/adb_files directory

3. MITMPROXY_CACERT_FILENAME to be the name of
the created mitmproxy CA certificate produced by
the generate_mitmproxy_cert.sh script. See Sec-
tion A.3.2 for more details on what to put for this setting.

4. NUM_APPS_PER_SAMPLE to the number of apps per sam-
ple group desired

5. NUM_CUTTLEFISH_DEVICES to the number of Cuttlefish
devices

Additionally, configure sudo to allow executing the script
cuttlefish/scripts/iptables.sh without requiring a
password. This script is executed for each Cuttlefish virtual
device in the current user, so it normally requires elevated
privileges. After verifying the contents of the script, you can
do this by running sudo visudo and adding the following
line:

your_username ALL=(ALL) NOPASSWD:
/path/to/cuttlefish/scripts/iptables.sh

A.3.2 Basic Test

To test functionality of the Jupyter notebooks, activate the
Python environment (with poetry shell in the artifact di-
rectory in the provided VM), and launch a Jupyter server by
running jupyter lab in the artifact directory. Then, con-
figure SSH port forwarding to your local machine over the
default Jupyter port 8888, and navigate to the URL from the
output of the Jupyter command in your browser of choice.

To test functionality of the Cuttlefish devices after installing
all dependencies, perform the following:

1. Navigate to your cf-images directory where you
downloaded the Android Cuttlefish images (e.g.,
$HOME/cf-images/11718355), and run the following:
HOME=$PWD ./bin/launch_cvd -num_instances=2
-resume=false -start_webrtc=true
-start_vnc_server=false

2. Wait until you see a message in the out-
put (colored green) asking you to navigate to
https://localhost:8443

3. Connect to the desktop environment, launch a browser,
and navigate to https://localhost:8443.

Next, bootstrap the mitmproxy CA certificate creation that
will be injected into the Android devices by doing the follow-
ing:

1. In /cuttlefish/compose.yaml, change the file path
of the hardumps volume to the absolute path of the in-
flated data/cuttlefish/hardumps folder.

2. Navigate to the /cuttlefish directory and run docker
compose up -build -d.

3. After the containers have been created, run the
generate_mitmproxy_cert.sh script from the same
directory.

4. The CA certificate should then be in the
/cuttlefish/adb_files directory (i.e., c8750f0d.0)

https://ci.android.com/builds/submitted/11718355/aosp_cf_x86_64_phone-userdebug/latest
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-vnc-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-vnc-on-ubuntu-20-04

5. Make sure to change the environment variable
MITMPROXY_CACERT_FILENAME in /cuttlefish/.env
to the name of the certificate.

Then, test that the Cuttlefish virtual device is appropri-
ately configured by the infrastructure by running python
analyze.py -test. You should see that the Cuttlefish de-
vices are set up before the script exits.

Finally, modify the input APKs to run with the Cuttlefish
infrastructure by:

1. Modifying the file samples_cuttlefish.csv in
/data/cuttlefish/samples, adding the SHA256
hash, package name, version string, and group name
(the provided samples file uses successful and
unsuccessful to refer to the originally-successful and
originally-unsuccessful APKs).

2. Place the added APKs into the directory
DIR_BASE/samples/<group> with the name
<package>_<version>_<hash>.apk.

3. To run the actual analysis, run analyze.py without the
test flag.

A.4 Evaluation workflow
A.4.1 Major Claims

The major claims made in the paper are as follows:
(C1): Expired domain names are found in the DNS traffic of

multiple versions of Android apps, regardless if they are
out of date or the latest available versions.

(C2): The purpose and use of many such domains can be
identified from the context of the request and inspecting
the decompiled APKs, and they can be abused by mali-
cious re-registrants to change app behavior, even if the
app itself does not change.

(C3): All eight figures and four tables presented in the
text can be produced from our extracted data. How-
ever, please note that because the commercial telemetry
data we used cannot be released, this artifact produces
slightly different versions of Figures 3 and 4, and Table
4. Additionally, Figure 7 is also slightly different, but
because of minor differences in how the original code
processed the raw data.

(C4): The app analysis infrastructure extracts DNS network
traffic of APKs.

A.4.2 Experiments

The following experiments can be performed to verify that
the artifacts are functional and can be used to reproduce the
results from the text. The Jupyter notebooks used for analysis
are bundled with pre-processed data so that the raw data —
which is large — does not have to be re-processed.

(E1): [5 human-minutes + 5 compute-minutes + 0GB disk]:
Run all cells in the footprints.ipynb notebook and verify
that domains were checked for expirations.
How to: Ensure the basic test for the Jupyter notebooks
has been completed, with a Jupyter server now running
in a Python environment with the dependencies installed.
Preparation: Connect to the Jupyter
server with your browser and open the
analysis/footprints.ipynb notebook.
Execution: Press Run → Run All Cells.
Results: The df_footprints variable
is a DataFrame that has a column named
expired_at_exec, denoting domains that were
expired during app execution. The rows that have this
column as True span multiple versions of different apps.

(E2): [30 human-minutes + 5 compute-minutes + 0GB disk]:
Run all cells in the decompilations.ipynb notebook and
verify that most of the domains can be found directly
inside the APK, and their purpose can be identified from
inspecting the decompiled APKs.
How to: Ensure the basic test for the Jupyter notebooks
has been completed, with a Jupyter server now running
in a Python environment with the dependencies installed.
Preparation: Connect to the Jupyter
server with your browser and open the
analysis/decompilations.ipynb notebook.
Execution: Press Run → Run All Cells.
Results: Verify that the Searching for
Domains in Decompiled Code launches
grep commands to search the decompiled APKs
for their corresponding domains. Manually con-
firm that files in the directory DIR_BASE →
samples-jadx-processing/expired_at_reg
contain the output of the grep commands. Randomly
sample some of the identified domains to look at the
decompiled APKs.

(E3): [10 human-minutes + 10 compute-minutes + 0GB
disk]: Run all cells in each Jupyter notebook and verify
that all figures and tables are produced.
How to: Ensure the basic test for the Jupyter notebooks
has been completed, with a Jupyter server now running
in a Python environment with the dependencies installed.
Preparation: Connect to the Jupyter
server with your browser and open the
footprints.ipynb, decompilations.ipynb,
and cuttlefish.ipynb notebooks in the
analysis/ directory.
Execution: Press Run → Run All Cells in each note-
book.
Results: Verify that footprints.ipynb produces
Tables 1, 2, and 4 and Figures 2, 3, 4, 7, and 8,
decompilations.ipynb produces Tables 3 and 4,
and Figure 5, and cuttlefish.ipynb produces Fig-
ure 6.

(E4): [10 human-minutes + 3*2*N/D compute-minutes +
0GB disk]: Launch the Cuttlefish infrastructure on a
sample of APKs.
How to: Ensure the basic test for the Cuttlefish infras-
tructure setup has been completed and the configuration
has been updated.
Preparation: Modify the cuttlefish/.env file
and change NUM_APPS_PER_SAMPLE, the number of
apps that will be analyzed from each of the two sample
groups (N), and NUM_CUTTLEFISH_DEVICES, the
number of live Cuttlefish virtual devices (D).
Execution: Using the configured Python environment,
run python analyze.py in the /cuttlefish di-
rectory.
Results: When analysis of an app com-
pletes, there is a pcap file in DIR_BASE →
DIR_DATADUMPS → tcpdumps → <group> →
<package>_<version>_<hash>_<timestamp>.pcap.

A.5 Notes on Reusability
The number of Cuttlefish devices that can be launched
concurrently can be adjusted by modifying the value of
the num_instances flag provided to the launch_cvd com-
mand, changing the NUM_CUTTLEFISH_DEVICES variable in
cuttlefish/.env, and adding additional Docker contain-
ers to cuttlefish/compose.yaml if necessary. Further-
more, the Cuttlefish infrastructure can be reused for differ-
ent APK inputs, and can be done by modifying the input
samples_cuttlefish.csv file that describe the APKs and
placing them into the expected locations. The analysis note-
books will continue to function even with the addition of new
data, although it may also be desirable to insert your own API
keys for Farsight and Dynadot to analyze new domains.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

