ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: Enhanced Label-Only
Membership Inference Attacks with Fewer Queries

Hao Li*
Institute of Software,
Chinese Academy of Sciences

Yutong Ye
Institute of Software,
Chinese Academy of Sciences

Zheng Li*
Shandong University

Min Zhang’
Institute of Software,
Chinese Academy of Sciences

Siyuan Wu
Institute of Software,
Chinese Academy of Sciences

Dengguo Feng
Institute of Software,
Chinese Academy of Sciences

Yang Zhang
CISPA Helmholtz Center for Information Security

A Artifact Appendix

A.1 Abstract

In this artifact, we demonstrate a label-only Membership In-
ference Attack called DHAttack, designed for Higher per-
formance and Higher stealth, focusing on the boundary dis-
tance of individual samples to mitigate the effects of sam-
ple diversity, and measuring this distance toward a fixed
point to minimize query overhead. The code primarily com-
prises three files: preprocessData.py, trainTargetModel.py and
DHAttackBase.py. These files support the CIFAR10 and CI-
FAR100 datasets, as well as the VGG-16, ResNet-56, and
MobileNetV2 models.

In this appendix, we summarize the key claims of the paper
and demonstrate how they can be verified using this artifact.
Our first claim is that DHAttack achieves effective results
with fewer than 100 queries. Secondly, DHAttack achieves
superior performance in most cases. It is important to note
that completing all experiments takes several hundred hours.
This is because our attack process requires training 256 ref-
erence models. While attacking a single target model only
requires training these 256 reference models once (a process
that takes tens of hours), verifying all six target models in the
paper (excluding those in the appendix) requires six times that
duration. In addition, Algorithm 2 in our paper defines the
fixed sample as an input parameter, allowing it to be modified.
Rather than directly using "RGB-255’, we assign the maxi-
mum pixel value across all dimensions to the sample (which
is also an outlier) as a fixed point in this artifact, primarily for
implementation convenience.

*The first two authors made equal contributions.
fCorresponding author.

A.2 Description & Requirements

This section outlines the experimental setup, including hard-
ware and software requirements and relevant benchmarks
used to produce results.

A.2.1 Security, privacy, and ethical concerns

There are no security, privacy, or ethical concerns associated
with executing this artifact. All experiments are conducted
solely on public datasets and widely used model architectures,
ensuring that no sensitive or private data is involved.

A.2.2 How to access

Our artifact is at https://zenodo.org/records/14728863.

A.2.3 Hardware dependencies

Evaluating our artifact requires an NVIDIA GeForce RTX
2080 Ti or a more powerful GPU. Since GPU performance
directly affects runtime, we recommend using an NVIDIA
GeForce RTX 4090 for optimal efficiency. There are no strict
requirements for the CPU or memory, though we recommend
at least 64GB of RAM to ensure smooth execution.

A.2.4 Software dependencies

Our artifact is compatible with Windows. All necessary de-
pendencies are listed in the requirements.txt file, with detailed
installation instructions available in Section A.3.1.

A.2.5 Benchmarks

Our experiment requires the CIFARIO and CIFARI100
datasets, which must be downloaded from their official web-

sites and placed in the designated folder. Detailed configura-
tion instructions are provided in Section A.3.1.

A.3 Set-up

This section outlines the installation and configuration steps
required to set up the environment for artifact evaluation.

A.3.1 Installation

The installation process is primarily divided into three stages:
dependency installation, data preparation, and target model
training.

Dependency installation. Create a new Python environ-
ment using Conda, specifying the environment name and
Python version:

conda create -n env_name python=3.8.

Once the environment is created, activate it and use pip
to install all the packages listed in the "requirements.txt"
file. To do this, first activate the environment with:

conda activate env_name,

then run the following command to install the dependen-
cies:

pip install -r requirements.txt.

Alternatively, you can manually install the dependencies
listed in the "requirements.txt" file.

Data preparation. For CIFARIO, please place
the CIFAR10 dataset files (downloaded from the
official website, including "data_batch_1" to
"data_batch_5" and "test_batch" files) into the
".\data\cifar-10-download" folder. For CIFAR100,
please place the CIFARIO00 dataset files (downloaded
from the official website, including "test" and "train"
files) into the ".\data\cifar-100-download" folder. In
addition, for Linux systems, we provide two helper scripts,
"download_cifarl0.sh" and "download_cifar100.sh",
which can automatically download the CIFARIO and
CIFAR100 datasets from the official website and place them
into the appropriate directories.

Next, execute the following commands:

python preprocessData.py --dataset CIFARIO.

python preprocessData.py --dataset CIFAR10O0.

Target model training. Please run the commands to ob-
tain the target models VGG-16, ResNet-56 and MobileNetV?2
trained on CIFAR10:

python trainTargetModel.py --dataset CIFAR1O
--classifierType vgg --num_epoch 100

python trainTargetModel.py --dataset CIFARLO
--classifierType resnet --num_epoch 100

python trainTargetModel.py --dataset CIFAR1O
--classifierType mobilenet --num_epoch 100

Then, by changing the "dataset" parameter and running
the three commands again, you can obtain target models

trained on the CIFAR100 dataset. This process is expected to
take approximately one hour.

A.3.2 Basic Test

You can use the code "DHAttackBase.py" we provide to verify
that all required dependencies are installed correctly.

python DHAttackBase.py --dataset CIFARI1O
--classifierType mobilenet
--num_epoch_for_refmodel 100 --disturb_num 5

If the process shows that reference models are being trained,
it indicates that all dependencies have been installed correctly.
At this point, you can safely terminate the process, as full
execution would take tens of hours. Note that this command
is only used to verify whether the required dependencies are
correctly installed. Its performance will be low due to the
"disturb_num" being set to only 5. For the formal experi-
ment, please refer to Section A 4.

A.4 Evaluation workflow

In this section, we present the main claims of the paper along
with the experiments that support them.

A.4.1 Major Claims

The major claims presented in our paper are as follows:

(C1): DHAttack achieves effective results with fewer than
100 queries. This is proven by the experiment (E1) de-
scribed in Section 5.1, whose results are illustrated in
Figures 5 and 6.

(C2): DHAttack achieves superior performance in most
cases. This is proven by the experiment (E2) described
in Section 5.1, whose results are illustrated in Table 3.

A.4.2 Experiments

The experiments supporting the main claims are detailed as

follows:

(E1): [High Stealth] [30 human-minutes + 450(75%6)
compute-hour + 220GB disk]: This experiment aims
to verify that DHAttack can achieve an effective attack
with only a small number of queries to the target model.
We expect performance to fluctuate at query counts of
5, 10, 20, 30, 50, 100, or 200, but DHAttack generally
achieves optimal results with fewer than 100 queries. As
the query count increases (e.g., 100 or 200), the fixedBD
measurement in our method becomes more sensitive to
decision boundary complexity, causing unstable values
across different reference models and affecting attack
performance. Therefore, Figures 5 and 6 highlight per-
formance fluctuations due to varying query numbers and
demonstrate that optimal effectiveness is achieved with
a small number of queries.

How to: To run the experiment, execute DHAttack-
Base.py, which generates one AUC value and one TPR
at 0.001 FPR per run. Use the classifierType and
dataset parameters to specify the target model and
dataset (e.g., vgg and CIFAR10 correspond to the first
subfigure in the top-left corner of Figures 5 and 6). Af-
ter successfully attacking a specified target model and
dataset for the first time, 256 reference models will have
been trained (a process taking tens of hours). For sub-
sequent attacks on the same target model and dataset,
this step can be skipped by setting the trainRefModel
parameter.
Preparation: If you have successfully completed data
preparation and target model training in A.3.1, no further
setup is required.
Execution: Please run the command:
python DHAttackBase.py --dataset CIFARILO
--classifierType vgg --num_epoch_for_refmodel
100 --disturb_num 5
This process is expected to take approximately 60 hours.
Once completed, record the AUC and the TPR at 0.001
FPR, as reported by our artifact. Next, run the following
commands (a process that may take approximately ten
hours or longer) and record the results for each:
python DHAttackBase.py --dataset CIFAR1O
--classifierType vgg —--num_epoch_for_refmodel
100 --disturb_num 10 --trainRefModel False

python DHAttackBase.py --dataset CIFARI1O
--classifierType vgg --num_epoch_for_refmodel
100 --disturb_num 20 --trainRefModel False

python DHAttackBase.py --dataset CIFARI1O
--classifierType vgg --num_epoch_for_refmodel
100 --disturb_num 30 --trainRefModel False

python DHAttackBase.py --dataset CIFARI1O
--classifierType vgg —--num_epoch_for_refmodel
100 —-disturb_num 50 --trainRefModel False

python DHAttackBase.py --dataset CIFAR1O
--classifierType vgg —--num_epoch_for_refmodel
100 --disturb_num 100 --trainRefModel False

python DHAttackBase.py --dataset CIFARILO
--classifierType vgg --num_epoch_for_refmodel

100 --disturb_num 200 --trainRefModel False
These results will contribute to the DHAttack curve in
the first subfigure of Figures 5 and 6, where the target
model is VGG-16 trained on CIFAR10. Repeat these
commands while adjusting the classifierType (i.e.,
resnet and mobilenet) and dataset (i.e., CIFAR100) pa-
rameters to obtain other performance curves for DHAt-
tack.

Results: The disturb_num parameter specifies the
number of queries made to the target model. You can
then observe that when attacking each target model,
DHAttack achieves optimal attack effectiveness with
fewer than 100 queries. Moreover, in most cases, the
performance is expected to surpass the baseline results
reported in Figures 5 and 6.

(E2): [High Performance] [20 human-minutes + 20 compute-
hour + 220GB disk]: This experiment aims to verify that
DHAttack can achieve superior performance in most
cases. Our expected results are generally consistent with
those shown in Table 3. There may be slight fluctuations
in the results. These differences are primarily due to the
inherent randomness in training the reference models,
such as random initialization. However, these variations
do not impact the advantages of our approach.

How to: To run the experiment, execute DHAttack-
Base.py, which generates one AUC value and one TPR
at 0.001 FPR per run. Set the dataset parameter to CI-
FAR10 and vary the classifierType between vgg, resnet,
and mobilenet to obtain the results presented in Table 3.
Preparation: If you have successfully completed El,
no further setup is required.
Execution: Please run the commands:
python DHAttackBase.py --dataset CIFAR10
--classifierType vgg --num_epoch_for_ refmodel
100 --disturb_num 30 --trainRefModel False

python DHAttackBase.py --dataset CIFARIO

--classifierType resnet

--num_epoch_for_refmodel 100 --disturb_num
50 --trainRefModel False

python DHAttackBase.py --dataset CIFARIO
--classifierType mobilenet
—--num_epoch_for_refmodel 100

——disturb_num 50 --trainRefModel False

After executing each command, record the AUC and the
TPR at 0.001 FPR, as reported by our artifact.

Results: The dataset and classifierType parame-
ters define the target model, while the disturb_num
parameter specifies the number of queries made to the
target model. You can then observe that when attacking
each target model, DHAttack achieves superior perfor-
mance in most cases, consistent with the results pre-
sented in Table 3.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

