
USENIX Security ’25 Artifact Appendix: Engorgio: An
Arbitrary-Precision Unbounded-Size Hybrid Encrypted Database via

Quantized Fully Homomorphic Encryption

Song Bian1, Haowen Pan1, Jiaqi Hu1, Zhou Zhang1, Yunhao Fu1, Jiafeng Hua2, Yi Chen3, Bo Zhang3,
Yier Jin4, Jin Dong3, and Zhenyu Guan1*

1Beihang University, 2Huawei Technology
3Beijing Academy of Blockchain and Edge Computing

4University of Science and Technology of China

A Artifact Appendix

A.1 Abstract
Engorgio is a hybrid encrypted database based on quantized
fully homomorphic encryption. Engorgio can efficiently evalu-
ate fast and arbitrary-precision homomorphic filtering, sorting
and complex aggregation algorithms that enable a variety of
SQL queries to be applied over FHE ciphertexts. This artifact
allows users to evaluate the availability and runtime latency
of Engorgio across various benchmarks.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The evaluation of our artifact does not introduce any risks to
machine security, data privacy, or ethical concerns.

A.2.2 How to access

Our implementation is available on Zenodo with the link
https://zenodo.org/records/14730651.

A.2.3 Hardware dependencies

The experimental results detailed in the manuscript were de-
rived from evaluations performed using an Intel Xeon Gold
6226R processor with 512 GB of RAM in a single-thread
environment.

A.2.4 Software dependencies

To evaluate the artifact, the specific OS and software packages
required include Ubuntu 20.04 as the operating system, along
with essential development tools like build-essential, g++-10,
apt-utils, ca-certificates, as well as version control (git), build

*Corresponding author.

tools (cmake>=3.16), and cryptographic library (libgmp-dev,
libntl-dev).

A.2.5 Benchmarks

SIFT dataset.

A.3 Set-up

A.3.1 Installation

Engorgio can be built (out-of-source) by executing following
commands:

1 $ cd Engorgio
2 $ mkdir build
3 $ cd build
4 $ cmake ..
5 $ make

A.3.2 Basic Test

Following the instructions above, nine output binaries will
be generated in the build/bin/ directory. You can run these
binaries by:

1 $./bin/comparison_test
2 $./bin/sort_test
3 $./bin/sync_test
4 $./bin/topk_test
5 $./bin/relational_query_test
6 $./bin/vectorized_query_test_1
7 $./bin/vectorized_query_test_2
8 $./bin/hybrid_query_test_1
9 $./bin/hybrid_query_test_2



A.4 Evaluation workflow

A.4.1 Major Claims

We enumerate the major claims of Engorgio as follows:
(C1): Engorgio achieves 28×–854× faster homomorphic

comparison, 65×–687× faster homomorphic sorting,
42×–4,595× faster homomorphic synchronization, and
4×–58× faster homomorphic Top-k over the state-of-
the-art (SOTA) solutions. This is proven by experiments
(E1, E2, E3 and E4) whose results are illustrated in Fig-
ure 5.

(C2): Engorgio is capable of evaluating efficient relational,
vectorized, and hybrid query benchmarks. This is proven
by experiments (E5, E6 and E7), whose results are illus-
trated in Figure 7.

A.4.2 Experiments

(E1): [Homomorphic Comparison] [3 human-minutes + 30
compute-minutes]: In this experiment, we perform the
homomorphic comparison operator in Engorgio, which
is the basic operator for a hybrid encrypted database.
Preparation: Following the instructions in Ap-
pendix A.3.1.
Execution: Running the binary file in the build/bin/
directory by executing ./bin/comparision_test.
Results: The runtime latency for the 8-bit precision ho-
momorphic comparison operators (both relational oper-
ator and equality operator) is less than 1 ms, while the
latency for the 16-bit precision is around 1.5 ms, for the
32-bit precision, it is approximately 3 ms, and for the
highest precision of 64 bits, the latency reaches approxi-
mately 8 ms. These evaluations were performed using
one thread and produced accurate results as shown in
Figure 5(a) and Figure 5(b).

(E2): [Homomorphic Sorting] [3 human-minutes + 25
compute-hours]: In this experiment, we perform the ho-
momorphic sorting operator in Engorgio, which is the
basic operator for data ordering and vector search.
Preparation: Following the instructions in Ap-
pendix A.3.1.
Execution: Running the binary file in the build/bin/
directory by executing ./bin/sort_test.
Results: The runtime latency for the 8-input homomor-
phic sorting is around 4.8×102 ms, while the latency for
the 64-input homomorphic sorting is around 1.44×104

ms, for the 1024-input homomorphic sorting is around
5.74× 105 ms, and for the 32768-input homomorphic
sorting, the latency reaches approximately 3.79× 107

ms. These evaluations were performed using one thread
and produced accurate results as shown in Figure 5(c).

(E3): [Homomorphic Synchronization] [3 human-minutes +
3 compute-hours]: In this experiment, we perform the
homomorphic synchronization operator in Engorgio.

Preparation: Following the instructions in Ap-
pendix A.3.1.
Execution: Running the binary file in the build/bin/
directory by executing ./bin/sync_test.
Results: The runtime latency for the 8-input homo-
morphic synchronization is around 2 ms, while the la-
tency for the 64-input homomorphic sorting is around 95
ms, for the 1024-input homomorphic sorting is around
1×104 ms, and for the 8192-input homomorphic sort-
ing, the latency reaches approximately 1.42× 105 ms.
These evaluations were performed using one thread and
produced accurate results as shown in Figure 5(d).

(E4): [Homomorphic Topk] [3 human-minutes + 12
compute-hours]: In this experiment, we perform the ho-
momorphic synchronization operator in Engorgio.
Preparation: Following the instructions in Ap-
pendix A.3.1.
Execution: Running the binary file in the build/bin/
directory by executing ./bin/topk_test.
Results: The runtime latency for the Top-1 in 256-input
is around 1.6×104 ms, while the Top-4 in 256-input is
around 4.2×104 ms, for the Top-8 in 256-input is around
5.2×104 ms, and for the Top-16 in 256-input, the latency
reaches approximately 6× 104 ms. These evaluations
were performed using one thread and produced accurate
results as shown in Figure 5(e).

(E5): [Relational Query] [3 human-minutes + 1.5 compute-
hours]: In this experiment, we perform the end-to-end
relational SQL query in Engorgio.
Preparation: Following the instructions in Ap-
pendix A.3.1.
Execution: Running the binary file in
the build/bin/ directory by executing
./bin/relational_query_test.
Results: The runtime latency for executing TPC-H Q1
and TPC-H Q12 on an encrypted database with varying
row sizes (211,212,213, and 214) is as follows: TPC-H
Q1 takes approximately 32 seconds, 66 seconds, 134 sec-
onds, and 270 seconds, respectively. TPC-H Q12 takes
approximately 28.5 seconds, 56.8 seconds, 114 seconds,
and 229 seconds, respectively. These evaluations were
performed using one thread and produced accurate re-
sults as shown in Figure 7(a) and Figure 7(b).

(E6): [Vectorized Query] [3 human-minutes + 30 compute-
hours]: In this experiment, we perform the end-to-end
vectorized query in Engorgio.
Preparation: Following the instructions in Ap-
pendix A.3.1.
Execution: Running the binary file in the build/bin/
directory by executing:
./bin/vectorized_query_test_1
./bin/vectorized_query_test_2.
Results: The runtime latency for executing vectorized
query VQ1 and VQ2 on an encrypted database with



varying row sizes (27,28,29, and 210) is as follows: VQ1
takes approximately 20 seconds, 48 seconds, 113 sec-
onds, and 266 seconds, respectively. VQ2 takes approx-
imately 23 seconds, 64 seconds, 150 seconds, and 340
seconds, respectively. These evaluations were performed
using one thread and produced accurate results as shown
in Figure 7(c) and Figure 7(d).

(E7): [Hybird Query] [3 human-minutes + 30 compute-
hours]: In this experiment, we perform the hybrid query
experiment in Engorgio.
Preparation: Following the instructions in Ap-
pendix A.3.1.
Execution: Running the binary file in the build/bin/
directory by executing:
./bin/hybrid_query_test_1
./bin/hybrid_query_test_2.
Results: The runtime latency for executing hybrid query
HQ1 and HQ2 on an encrypted database with vary-
ing row sizes (26, 28, 210, and 212) is as follows: HQ1
takes approximately 15.3 seconds, 105 seconds, 600 sec-
onds, and 3313 seconds, respectively. HQ2 takes approx-
imately 9.3 seconds, 50 seconds, 259 seconds, and 1270
seconds, respectively. These evaluations were performed
using one thread and produced accurate results as shown
in Figure 7(e).

A.5 Notes on Reusability
None

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


