
USENIX Security ’25 Artifact Appendix: Easy As Child’s Play: An
Empirical Study on Age Verification of Adult-Oriented Android Apps

Yifan Yao, Shawn McCollum, Zhibo Sun, Yue Zhang
Drexel University

A Artifact Appendix

A.1 Abstract
GUARD (Guarding Underage Access Restriction Detection)
is an automatic tool that analyzes the existence of age verifi-
cation mechanisms by determining relevant components (e.g.,
those that can accept the user’s age or date of birth) based on
the relationships of the components in a layout and tracking
the data flows through taint analysis. GUARD contains both
a static and a dynamic analyzer. Both analyzers are written
in Java; therefore, they are compatible with all operating sys-
tems. The static analyzer is based on Soot, while the dynamic
analyzer is based on Appium.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

To ensure the compliance of the community standards, it is
imperative to strictly adhere to the following guidelines. The
guidelines are as follows:

• Responsible Collection of Data: A significant number
of Android Packages may be required for conducting
large-scale research. Therefore, it is essential to ensure
that this collection process does not interfere with the
website owner’s operations. Improperly managed web
scraping can disrupt the website’s normal functionality.
We recommend utilizing AndroZoo; however, we also
advise collecting data from additional sources to enhance
diversity.

• Analysis in Controlled Environment: All analyses
must be conducted within a controlled setting, using
personal account and machines.

A.2.2 How to access

• Project source code is hosted on Zenodo: https://doi.
org/10.5281/zenodo.14676162

A.2.3 Hardware dependencies

• Since GUARD unpacks Android packages into RAM
for analysis, it is strongly recommended to run on ma-

chines with a minimum of 32GB of RAM.

• To execute the dynamic analyzer, it is required to have an
Android emulator or a physical Android device. The em-
ulator can be installed via Android Studio or the Android
SDK Command-Line Tools.

• Although GUARD is compatible with all operating sys-
tems, it is strongly recommended to run the dynamic
analyzer on an emulator (Mac computers with Apple
Silicon is recommanded) or phone with an ARM64 ar-
chitecture.

• At least 100GB of free disk space.

A.2.4 Software dependencies

Although this project is developed in Java, ensuring OS in-
dependence, the provided instructions have been written and
tested specifically on macOS Sequoia (15.0+).

• Java Development Kit (JDK) 21: https://www.
oracle.com/java/technologies/downloads/
#java21

• Gradle: https://gradle.org/install/

• Android SDK Command-Line Tools (not necessary
to have full Android Studio): https://developer.
android.com/studio#command-tools

• Android Build Tools, Android Platform Tools, Android
API 33 (Android 13) SDK Platform: $ sdkmanager
"build-tools;33.0.2" "platform-tools"
"platforms;android-33"

• Android System Images (Android 13): $ sdkmanager
"system-images;android-33;google_apis;arm64-v8a"

• Node.js: https://nodejs.org/en/download/

• Appium: $ npm i -location=global appium

• Appium Driver (UiAutomator2): $ appium driver
install uiautomator2

• (Optional) Docker for build and run container for static
analysis.

https://androzoo.uni.lu
https://doi.org/10.5281/zenodo.14676162
https://doi.org/10.5281/zenodo.14676162
https://www.oracle.com/java/technologies/downloads/#java21
https://www.oracle.com/java/technologies/downloads/#java21
https://www.oracle.com/java/technologies/downloads/#java21
https://gradle.org/install/
https://developer.android.com/studio#command-tools
https://developer.android.com/studio#command-tools
https://nodejs.org/en/download/

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

clone the repository
git clone https://github.com/Drexel -

SePAL/AgeScope.git

cd AgeScope

download sample apks
chmod +x download.sh
./download.sh

build
gradle build

A.3.2 Basic Test

Static Analysier via Docker (results will be placed in
sample/result folder):

build container image
docker build -t agescope .

run the container
docker run -it \

--tmpfs /mnt/ramdisk:rw,size=8g \
-v $PWD/sample/:/sample agescope

check results
cat sample/result/*.txt

Dynamic Analysier with Android Emulator:

create emulator
avdmanager create avd \

-n "Pixel_6_0" \
-d "pixel_6" \
-k "system -images;android -33;

google_apis;arm64 -v8a"

start emulator (new terminal window)
emulator -avd Pixel_6_0 \

-partition -size 8192 \
-wipe -data

start Appium server (new terminal
window)

appium

run the dynamic analyzer

java -cp ./build/libs/AgeScope -1.0-
SNAPSHOT.jar DynamicAnalyzer.Main \
-i sample/apk_index.txt \
-v 13 \
-o sample/result \
-u emulator -5554 # adb devices -l

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): GUARD utilizes a combination of static and dynamic
analysis to detect the existence of age verification mech-
anisms in Android applications.

(C2): Static Analyzer unpacks Android packages and: 1)
Extracts the app’s XML layout structure to analyze age
verification keywords; 2) Tracks input fields that may be
used to detect the user’s age or identity.

(C3): Dynamic Analyzer loads and processes app layouts in
real time by running the app on an emulator or physical
device. Once launched, it attempts to interact with the
app extensively to trigger and identify the age verifica-
tion mechanism.

A.4.2 Experiments

General Setup for Experiments:

• Collect Android Packages: Please download the
Android APK samples we provide by executing
download.sh. Or you can download the APK samples
from the internet. When collecting packages from the
internet, besides app identifier and content rating, ensure
you gather metadata as much as possible for futher analy-
sis, include but not limited to version number, developer
information, and description.

• Generate Index File for Android Packages: The index
file is a text file that includes the path of apk files.

(E1): [Static Analysis] [30 human-minutes + 5 compute-
minutes + 16GB memory]:
Preparation: Please refer to General Setup for Exper-
iments.
Execution: The static analyzer can be executed via
Docker (see Static Analyzer via Docker) or natively on
macOS by running the macos_run.sh script. The script
automatically sets up the environment and runs the static
analyzer. For more details, refer to README.md.
Results: The results of the static analysis are lo-
cated in the sample/result folder, formatted as
<index_file>_result.txt. The static analyzer out-
puts the analysis results, including the app’s package
name and the types of age verification mechanisms found
in both layout XML files and activities in details.

(E2): [Static Analysis] [60 human-minutes + 15 compute-
minutes + 16GB memory]:
Preparation: Please refer to General Setup for Exper-
iments and Dynamic Analysier with Android Emula-
tor.
Execution: The dynamic analyzer can only run natively
and requires an Android emulator or a physical Android
device. Before running the analyzer, ensure the emulator
or device is connected to the computer, recognized by
Android Debug Bridge (adb), and that the Appium server
is running. The analyzer will then automatically install
the app and perform the analysis.
Results: The static analysis results are stored
in the sample/result folder, formatted as
<index_file>_exec_result.txt. The dynamic
analyzer outputs the analysis results, including the
app’s package name and the corresponding string
found during execution, which is used to identify age
verification mechanisms.

A.5 Notes on Reusability
Due to the varying implementations of age verification across
regions, this project can be tailored to identify and adapt to
different age verification mechanisms based on their distinct
features.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

