
USENIX Security ’25 Artifact Appendix:
Posthammer: Pervasive Browser-based Rowhammer Attacks with

Postponed Refresh Commands

Finn de Ridder
ETH Zurich

Patrick Jattke
ETH Zurich

Kaveh Razavi
ETH Zurich

A Artifact Appendix

A.1 Abstract
Posthammer shows that browser-based Rowhammer attacks
are pervasive. In particular, we show that the majority of
DDR4 devices are vulnerable to clflush-free Rowhammer pat-
terns that the attacker can launch from client-side JavaScript.

Posthammer includes the following artifacts: first, an ex-
periment for inducing and measuring refresh postponement.
Second, a fuzzer for triggering Rowhammer bit flips natively
using clflush-free and refresh-postponing patterns in a large
search space. Third, a JavaScript version of the fuzzer that
searches for effective patterns in a reduced search space.
Fourth, an exploit that obtains an arbitrary read-write primi-
tive in the address space of the JavaScript process.

A.2 Description & Requirements
To reproduce our results, the evaluator needs:

1. The hard- and software dependencies listed under A.2.3
and A.2.4.

2. The artifacts themselves, which are available at
https://doi.org/10.5281/zenodo.14738152 and
https://github.com/comsec-group/posthammer
(preferred).

After unpacking the artifacts, execute the following com-
mands:

1. For the first two artifacts, the experiment and native
fuzzer, in ./native-fuzzer, execute ./main.sh |&
tee dump. Simply run it again if you get an error about
mem.o missing. The refresh postponement experiment
requires the SPLIT_DETECT macro to be defined.

2. For the JavaScript fuzzer, in ./js-dbg-hugepages, exe-
cute make clean && make; make. We run make twice
to force execution despite the transpiler warnings.

3. For the exploit, in ./js-exploit, also execute make
clean && make; make.

The exploit may fail either due to a segfault or an assertion
failing (e.g. because it cannot find an eviction set). In these
cases, please try again. Similarly, the native fuzzer may fail
to find its first eviction set, but should otherwise not crash.

The exploit will run until it has (intentionally) segfaulted
at 0x1337 while the native fuzzer will fuzz indefinitely while
writing its results to ./pattern/flip.csv. Human-friendly
output can be found in dump (if captured as suggested above).
Search for -> to view the bit flips that have been triggered.

A.2.1 Security, privacy, and ethical concerns

The artifacts are safe. As mentioned above, upon successful
execution, the exploit causes a harmless segmentation fault
at address 0x1337. This segmentation fault will be reported
in the kernel log, see dmesg. Unsuccessful runs will trigger
arbitrary but equally benign segmentation faults in the address
space of the script.

A.2.2 How to access

The latest version of the artifacts is available at https:
//github.com/comsec-group/posthammer. The direc-
tory structure suggests where which artifact can be
found: the exploit is contained in js-exploit, the na-
tive fuzzer in native-fuzzer, and the JavaScript fuzzer in
js-dbg-hugepages.

A.2.3 Hardware dependencies

1. A desktop machine with an Intel Core i7-7700K (Kaby
Lake) processor. This is a strict requirement for the ex-
ploit. The native fuzzer also works on Intel Core i7-
8700K (Coffee Lake) CPUs.

2. A (single) vulnerable DDR4 DIMM. The specifics of
the DIMMs used in the paper are given in the paper’s
appendix. For testing, we recommend a Samsung (A)
DIMM, as they are most vulnerable to Posthammer.

https://doi.org/10.5281/zenodo.14738152
https://github.com/comsec-group/posthammer
https://github.com/comsec-group/posthammer
https://github.com/comsec-group/posthammer


A.2.4 Software dependencies

1. A Debian-based operating system. We have used Ubuntu
18.04.6 under Linux 5.4.0-150-generic. Although we rec-
ommend to use exactly these versions, newer ones might
also work. For example, the native fuzzer also works on
Ubuntu 22.04.5 under Linux 5.15.0-130-generic.

2. Certain software packages. The details are given in the
README. The installation should be straightforward.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

We refer the evaluator to the README for the installation
instructions.

A.3.2 Basic Test

The following tests can be used to verify the environment.

1. The availability and version of the TypeScript transpiler:

$ tsc --version
Version 2.7.2

2. The availability and version of the JavaScript shell:

$ ./jsshell-130/js --version
JavaScript-C130.0

A.4 Evaluation workflow
A.4.1 Major Claims

C0: Rowhammer patterns crafted as specified in the paper
(Sections 5 and 6) induce refresh postponement. This is
proven by Figure 2 of the paper, which can be reproduced
using E0, see below.

C1: On the majority of DDR4 devices, these non-uniform
and/or refresh postponing clflush-free Rowhammer pat-
terns trigger bit flips while the self-evicting patterns used
in previous work do not. This is proven by Experiment
6 (Table 2) in the paper.

C2: It is possible to trigger these bit flips from JavaScript
with a reduced search space. See also Experiment 6 and
Table 2.

C3: The bit flips triggered by these patterns can be used to
obtain an arbitrary read-write primitive in the JavaScript
runtime.

A.4.2 Experiments

The experiments below map linearly to the claims in A.4.1.

E0: Refresh postponement: produces Figure 2 of the paper
and therefore shows that our patterns induce refresh post-
ponement.

1. Navigate to ./native-fuzzer/pattern/pattern.c.
Open the file and enable the SPLIT_DETECT macro.

2. Execute ./native-fuzzer/main.sh. This
should take around 30 minutes. Plot the data it has
written to ./native-fuzzer/split.csv.

E1: Native fuzzer: explores the clflush-free, non-uniform, and
refresh-postponing pattern space. Triggers bit flips on
most DDR4 devices, see again Table 2.

1. Make sure the SPLIT_DETECT macro is undefined
(default).

2. Execute ./native-fuzzer/main.sh |& tee
dump. Depending on the vulnerability of the
DIMM, it may take several hours until the first bit
flip. As Table 2 shows, however, for most DIMMs,
6 hours should suffice.

As mentioned A.2, we recommend piping the output to
a file and grepping it for the arrow symbol -> to check
for bit flips.

E2: JavaScript fuzzer: shows that the native patterns translate
to JavaScript. Relies on huge pages for convenience.

1. Navigate to ./js-dbg-hugepages and execute
make clean && make; make.

The Makefile should automatically enable transparent
huge pages (THPs).

E3: Exploit: the exploit. Does not rely on huge pages. Uses
two bit flips to obtain an arbitrary read-write primitive
in the JavaScript runtime. To showcase the primitive, we
write to virtual address 0x1337 and segfault.

1. Navigate to ./js-exploit and execute make
clean && make; make.

The exploit may take up to an hour to complete. More-
over, it may segfault before completion due to un-
wanted bit flips. It will print About to segfault at
0x1337... just before segfaulting as planned, which
may be verified by inspecting dmesg.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


