
USENIX Security ’25 Artifact Appendix: Available Attestation: Towards
a Reorg-Resilient Solution for Ethereum Proof-of-Stake

Mingfei Zhang
Shandong University

mingfei.zh@outlook.com

Rujia Li⋆

Tsinghua University
rujia@tsinghua.edu.cn

Xueqian Lu
Independent Researcher
xueqian.lu@bitheart.org

Sisi Duan⋆†

Tsinghua University
duansisi@tsinghua.edu.cn

A Artifact Appendix

A.1 Abstract

We present available attestation, a provable reorg-resilient
solution for Ethereum Proof-of-Stake. In this work, we show
that the majority of the known attacks on Ethereum PoS are
some form of reorganization attacks. In practice, most of these
attacks can be launched even if the network is synchronous
(there exists a known upper bound for message transmission
and processing). Different from existing studies that mitigate
the attacks in an ad-hoc way, we take a systematic approach
and provide an elegant yet efficient solution to reorganization
attacks. We implement our modified protocol and five reorg
attacks in our artifact and evaluate them using a local-built
testnet of 16,384 clients. The results show that our protocol
is resilient to five reorganization attacks and highly efficient.
This artifact shows how to reproduce the results in Section 8
of our paper.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

All experiments are conducted on a local testnet (running on
a single local machine). No experiments are conducted on
the live Ethereum network. This repository does not uncover
new vulnerabilities but instead analyzes known malicious
reorganization attacks.

A.2.2 How to access

The artifact can be accessed by cloning our public Github
project. All the scripts, container images, source codes, and

⋆ Corresponding author.
† Sisi is also with Zhongguancun Laboratory, Shandong Institute of

Blockchains, BNRist, and State Key Laboratory of Cryptography and Digital
Economy Security.

sample output files can be accessed via the stable URL:
https://zenodo.org/records/15205897.

A.2.3 Hardware dependencies

The experiments do not require any specialized hardware.
Our test environment is a computer with a 4-core CPU, 16
GB of RAM, 100 GB of storage, and a 100 Mbps network
connection.

A.2.4 Software dependencies

Our experiments run inside Docker containers. Make sure
you install Docker following the official documentation, and
verify that your Docker Engine version is at least 24.
We use Python for data processing and plotting. Make sure
you have Python 3.10 (or a later version) installed. Then
install the required packages via the following command::

pip3 install -r requirements.txt

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

After installing Docker and Python3, run the following steps:

1. Git clone the repository:
git clone https://github.com/tsinghua-

cel/available-attestation

2. Enter the cloned repository directory (denoted as $HOME):
cd available_attestation/

3. Switch to the stable version:
git checkout

94b76d76126481031e5aaa524cf19ced6414a182

4. Build the docker image:
./build.sh

https://zenodo.org/records/15205897

A.3.2 Basic Test

After building the docker image, run the basic test by the
command:
./runtest.sh basic

The following outputs are expected:
[+] Running 19/19
- Network basic_meta Created 0.1s
- Container execute5 Started 0.4s
- Container execute3 Started 0.4s
- Container execute1 Started 0.4s
- Container ethmysql Started 0.4s
- Container execute2 Started 0.4s
- Container execute4 Started 0.2s
- Container beacon-2 Started 0.6s
- Container attacker-1 Started 0.4s
- Container beacon-3 Started 0.4s
- Container beacon-1 Started 0.6s
- Container beacon-4 Started 0.4s
- Container beacon-5 Started 0.6s
- Container validator-4 Started 0.6s
- Container validator-3 Started 0.8s
- Container strategy Started 0.8s
- Container validator-1 Started 0.8s
- Container validator-2 Started 0.8s
- Container validator-5 Started 0.8s

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The number of reorg blocks for the modified protocol
is zero. This is validated by the experiments (E1), which
reproduce the results described in Figure 13, Section 8
of the paper.

(C2): The throughput of the vanilla protocol and the modi-
fied protocol are almost the same. This is proven by the
experiments (E2), which reproduce the results described
in Figure 14, Section 8 of the paper.

(C3): The latency of the vanilla protocol and the modified
protocol are almost the same. This is proven by the ex-
periments (E3), which reproduce the results described
in Figure 15, Section 8 of the paper.

A.4.2 Experiments

(Overview) We conduct three types of experiments: reorg re-
silience experiments (E1), throughput experiments (E2),
and latency experiments (E3). Each experiment is per-
formed for both the vanilla Ethereum PoS protocol and
the modified Ethereum PoS protocol.

(E1): [25 compute-hour] The experiments involve five reor-
ganization attacks (i.e., ex-ante reorg attack, sandwich
reorg attack, unrealized justification reorg attack, justifi-
cation withholding attack, and staircase attack). These
experiments last for 12.5 hours on each protocol. The
entire experimentation time thus lasts for 25 hours.

How to: run the experiment with the command under
$HOME :
./runtest.sh reorg

The experiments will run reorganization attacks for 9000
seconds on each protocol (approximately 25 hours in
total). The output should be similar to that in the basic
test. At the end of the experiment, the output will display:
test done and all data in

$HOME/results/reorgtest, report in

$HOME/reorgs.png

Results: After completion, the result can be found in
the $HOME directory. The number of reorg blocks for the
modified protocol should align with the data shown in
Figure 13 in the paper (i.e., the number of reorg blocks
in the modified protocol is zero).
Note: Experiment E1 will run for 25 hours. If one does
not want to wait for such a long period of time, run the
following commands to conduct each attack separately.
Each attack lasts for about five hours.
Run the modified exante reorg attack:
./runtest.sh 1

Run the sandwich reorg attack:
./runtest.sh 2

Run the unrealized justification reorg attack:
./runtest.sh 3

Run the justification withholding reorg attack:
./runtest.sh 4

Run the staircase attack:
./runtest.sh 5

(E2): [1.3 compute-hour] The experiments are used for as-
sessing the throughput of both the vanilla protocol and
the modified protocol.
How to: run the experiment with the command under
$HOME :
./runtest.sh tps

An experiment lasts for 40 minutes for each protocol.
The entire experiment lasts for 1.3 hours in total. The
output should be similar to that in the basic test. At the
end of the experiment, the output will display:
test done and all data in $HOME/results/tps,

report in $HOME/tps.png.

Results: After completion, the results can be found in
the $HOME directory. The throughput of the modified
protocol should align with the data shown in Figure 14
in the paper (i.e., the throughput of the vanilla protocol
and the modified protocol are almost the same).

(E3): [20 compute-minutes]: The experiments test the la-
tency of both the vanilla protocol and the modified pro-
tocol.
How to: run the experiment with the command under
$HOME :
./runtest.sh latency

The experiments evaluate the computation time across

both the vanilla protocol and the modified protocol. The
output should be similar to that in the basic test. At the
end of the experiment, the output will display:
test done and all data in

$HOME/results/blockcost, report as bellow.

Results: After completion, the results can be found in
the $HOME directory. The latency of the modified protocol
should align with the data shown in Figure 15 in the
paper (i.e., the latency of the vanilla protocol and the
modified protocol are almost the same).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

