
USENIX Security ’25 Artifact Appendix: Systematic Evaluation of
Randomized Cache Designs against Cache Occupancy

Anirban Chakraborty∗† Nimish Mishra∗‡ Sayandeep Saha§

Sarani Bhattacharya‡ Debdeep Mukhopadhyay‡

†Max Planck Institute for Security and Privacy, Germany
‡Indian Institute of Technology Kharagpur, India

§Indian Institute of Technology Bombay, India
anirban.chakraborty@mpi-sp.org nimish.mishra@kgpian.iitkgp.ac.in {sarani, debdeep}@cse.iitkgp.ac.in sayandeepsaha@cse.iitb.ac.in

A Artifact Appendix

A.1 Abstract

This work performs a systematic evaluation of 5 random-
ized cache designs- CEASER, CEASER-S, MIRAGE, Scatter-
Cache, and SassCache against cache occupancy wrt. both
performance as well as security. This work fills in a crucial
gap in current literature on randomized caches: currently most
randomized cache designs defend only contention-based at-
tacks, and leave out considerations of cache occupancy. With
respect to performance, this work proposes a new and uni-
form benchmarking strategy, which allows us to perform a
fair and comparative analysis across all designs under vari-
ous replacement policies. Likewise, with respect to security
against cache occupancy attacks, this work evaluate the cache
designs against various threat assumptions: 1⃝ covert chan-
nels, 2⃝ process fingerprinting, and 3⃝ AES key recovery (to
the best of our knowledge, this work is the first to demon-
strate full AES key recovery on a randomized cache design
using cache occupancy attack). The main takeaway of our
work is to establish the need to also consider cache occupancy
side-channel in randomized cache design considerations.

In this artifact appendix, we detail steps to reproduce our
results from the paper. We first detail how to build and run the
different randomized cache designs in gem5. MIRAGE and
ScatterCache are already open-sourced, while CEASER and
CEASER-S have been implemented in-house by us and open-
sourced. The implementation of SassCache has been gen-
erously contributed by SassCache’s authors and adapted to
our setup. Thereafter, we detail steps to reproduce the vari-
ous experiments related to performance and security analysis
detailed in the paper.

*Equal Contribution.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

This artifact does not have any destructive tendencies, and
is thus safe to use. Moreover, we do not attack any commer-
cial library/implementation in this work, and thereby do not
come under the purview of disclosure and release of security
advisories.

A.2.2 How to access

The permanent link for the source codes used in this pa-
per can be found at: https://github.com/SEAL-IIT-KGP/
randomized_caches/tree/main (tag: v3.0). The artifact
is also hosted at Zenodo; url: https://doi.org/10.5281/
zenodo.15198048.

A.2.3 Hardware dependencies

We do not have any specific requirements for hardware. How-
ever, it is recommended to have at least 16 MB of RAM for
smooth gem5 simulations. For all our experiments reported
in this appendix, we used Intel(R) Xeon(R) Gold 6226R CPU
as the evaluation platform (running Ubuntu 20.04.6 LTS, 32
GB RAM).

A.2.4 Software dependencies

We have the following major requirements: gcc-9, g++-9,
python2.7, and virtualenv. ScatterCache specifically
requires gcc-7 and g++-7. Other dependencies include:
git, python2.7-dev, wget, curl, pip, zlib, HDF5, M4
macroprocessor, matplotlib, and python-dev. Rest de-
pendencies are installed automatically by the setup scripts
(detailed below).

mailto:anirban.chakraborty@mpi-sp.org
mailto:nimish.mishra@kgpian.iitkgp.ac.in
mailto:debdeep@cse.iitkgp.ac.in
mailto:sayandeepsaha@cse.iitb.ac.in
https://github.com/SEAL-IIT-KGP/randomized_caches/tree/main
https://github.com/SEAL-IIT-KGP/randomized_caches/tree/main
https://doi.org/10.5281/zenodo.15198048
https://doi.org/10.5281/zenodo.15198048

A.2.5 Benchmarks

Experiments related to performance benchmarking and fin-
gerprinting attack require SPEC2017 should our results be
reproduced from scratch. Alternatively, the results can also
be derived from the in-house datasets related to these exper-
iments that we open-source. We do not provide SPEC2017
sources as part of the artifact due to license constraints.

A.3 Set-up

A.3.1 Installation

Navigate to the subdirectory
randomized_cache_hello_world/ and execute setup.sh.
This script sets up a virtual environment in Python 2.7,
installs the needed dependencies (like scons and six), and
builds the gem5 binaries of all cache designs.

The bottleneck step in this installation is the number
of threads used to build gem5. The parameter THREADS
in setup.sh controls the amount of parallelization: more
threads imply shorter build time, but also uses more RAM.
We have set THREADS to a conservative 1, but recommend
tweaking it based on the system configuration.

A.3.2 Basic Test

The subdirectory randomized_cache_hello_world/
contains scripts: run_ceaser.sh, run_ceaser_s.sh,
run_mirage.sh, run_scatter.sh, and run_sass.sh.
Each of these scripts build a sample binary (i.e.
spurious_occupancy.c) and executes the same within
the gem5 simulation of its respective cache architecture. A
successful simulation is implied by an exit message of form:

Spurious Occupancy step finished. Exiting @ tick
67659457149 because exiting with last active thread context

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Performance Evaluation: One of the main claims
of the paper is that prior benchmarking techniques are
unsuitable for a fair evaluation of modern randomized
cache designs. Section 3.3 introduces the idea of bench-
marking under spurious occupancy. We claim this bench-
marking strategy provides a fair evaluation for all cache
designs by (1) removing any implementation specific
assumption, and (2) harmonizing the parameters consid-
ered for benchmarking different designs.

(C2): Performance Evaluation under different Replace-
ment Policies: This work also shows the effect of re-
placement policies on the performance of different cache

designs, allowing for a better understanding and take-
aways for the performance different cache designs. This
claim pertains to Section 3.4 in the main paper.

(C3): Covert Channel: An important claim of the paper is
that certain kinds of randomized cache designs allevi-
ate creation of covert channels. We claim that design
rationale based on pseudo-fully associative design are
more amenable to creation of covert channels than set-
associative designs. This claim pertains to Section 5 in
the main paper.

(C4): Process Fingerprinting: We claim that pseudo-fully
associative design are more amenable to process finger-
printing side-channel attacks than set-associative designs.
This claim pertains to Section 6 in the main paper.

(C5): AES key recovery: We claim that pseudo-fully asso-
ciative design are more amenable to AES key recovery
side-channel attacks than set-associative designs. This
claim pertains to Section 7 in the main paper.

A.4.2 Experiments

(E1): [Performance Evaluation] [10 human-minutes + 24
compute-hours + 3GB disk]: To reproduce results related
to claim C1.
How to: Navigate to subdirec-
tory perf_runs. It has the scripts
run_baseline_benchmark.sh, run_ceaser_benchmark.sh,
run_ceaser_s_benchmark.sh,
run_mirage_benchmark.sh, run_sass_benchmark.sh,
and run_scatter_benchmark.sh that help run SPEC2017
benchmarks on the associated cache designs.
Preparation: The environment variable BASE_DIR
must point to the top-level directory of the artifact,
while the environment variable SPEC_PATH points to the
SPEC2017 installation.
Execution: Run one of the scripts, providing a bench-
mark name as input. The list of supported benchmarks
is captured in the README file of the perf_runs sub-
directory. For example, bash run_mirage_benchmark.sh
blender runs blender on MIRAGE.
Results: The collected measurements must be put into
perf_runs/perf_data/randomized_caches.xlsx
to reproduce the results in Section 3.3.

Data: Alternatively, we also provide our dataset in
perf_runs/perf_data/. The sub-directory names are
a combination of the cache design and the replacement
policies. To reproduce results related to claim C1, con-
sider only the subdirectories with suffix RandomRP.

Each subdirectory contains further direc-
tories for each benchmark. For instance,
ceaser_perf_runs_RandomRP/gcc contains the
stats.txt for running the SPEC2017 benchmark
gcc on CEASER under the default replacement pol-

icy. A helper script compile_stats.sh will aid in
constructing the requisite data from these sub-directories

We have already abstracted out results
of compile_stats.sh for each subdi-
rectory of perf_runs/perf_data/ into
perf_runs/perf_data/randomized_caches.xlsx.
This spreadsheet contains formulae for automatically
computing the LLC miss ratio, normalize it against
the baseline, and perform performance evaluation. It
reproduces Table 2 of the paper, as well as computes
data used by the scripts in $BASE_DIR/scripts which
plot Figure 5 in the main paper..

(E2): [Performance Evaluation under Replacement Policies]
[10 human-minutes + 24 compute-hour + 3GB disk]: To
reproduce results related to claim C2.

How to: Same as E1.
Preparation: Same as E1.
Execution: Same as E1, except that the replacement policy

can also be provided as input. Refer to the README in
the artifact for more details.

Results: Same as E1

Data: Same as E1. This experiment reproduces Table 2 of
the paper.

(E3): [Covert Channel] [10 human-minutes + 8 compute-
hours]: To reproduce results related to claim C3.

How to: Navigate to sub-directory llc_simulator.
Preparation: None. This experiment does not require any

additional setup. The source codes are mostly written
in python3 and uses basic packages such as numpy and
matplotlib.

Execution: Execute bash run_simulation.sh. This
script executes occupancy based covert channel setup
for MIRAGE, CEASER, ScatterCache, and Baseline.
The scripts collect covert channel data and write
to outfile_*.txt for both bits 0 and 1. Finally,
covert_channel_plot.py plots the collected data.

Results: This experiment validates the claim C3. Overall,
this experiment establishes that randomized caches that
rely on pseudo-fully associative design rationale are sus-
ceptible to covert channel setup (with high accuracy)
even with 10% accuracy. On the other hand, compara-
tively, it is difficult to setup a covert channel of accept-
able accuracy with 10% accuracy.

(E4): [Process Fingerprinting] [10 human-minutes + 48
compute-hours + 8GB disk]: To reproduce results re-
lated to claim C4.

How to: Navigate to sub-directory fingerprinting.

Preparation: Same as E1 and E2 since this experiment re-
quires setting up SPEC2017.

Execution: Follow the steps README illustrates in the sub-
directory. Essentially, this experiment is similar to E1,
except that the benchmarks are randomly selected.

Results: Use the scripts ceaser.py, ceaser_s.py,
mirage.py, sass.py, and scatter.py to construct
accuracy metrics for the fingerprinting experiment.

Data: We have open-sourced the data collected inter-
nally in fingerprinting/data/ as *.log files. Run-
ning the scripts ceaser.py, ceaser_s.py, mirage.py,
sass.py, and scatter.py on these log files creates the
data used to construct Figure 8 in the main paper (and
the inferences drawn in Section 6).

(E5): [AES] [10 human-minutes + 1 compute-hour + 0.5 GB
disk]: To reproduce results related to claim C5.

How to: Navigate to the directory aes. It has two subdi-
rectories: aes_profiled_key and aes_victim_key.
The C implementations of the AES T-Box within
these subdirectories contain the attack and victim
code. aes_profiled_key contains the key being used
for profiling: 0xffeeddccbbaa99887766554433221100.
On the other hand, aes_victim_key contains the
key being recovered from the constructed profile:
0x7766554433221100ffeeddccbbaa9988. All data is
collected at 50% occupancy (Section 7.3 and 7.4) and
suffices to establish the reproducibility of our attack.

Preparation: None
Execution: The analysis subdirectory contains the dataset

for each randomized cache design. For each cache de-
sign, we provide a script analysis.py that constructs
the profile and mounts the attack (as per Section 7.1 of
the paper), as well as a script guessing_entropy.py
that computes the guessing entropy.

Results: The computed guessing entropy for the cache de-
sign comes out as: MIRAGE : 33.0, CEASER-S : 92.0,
SassCache : 104.0, and ScatterCache : 100.0. Note that
the results in Section 7.3 have been compiled over runs
over multiple different keys while the artifact contains
representative runs of a single key. This implies the exact
value of the guessing entropy in the paper is different that
what these scripts output. However, the general trend
of strength/weakness of each design against AES key
recovery attacks still stands. More precisely:

1. GE for MIRAGE: Paper [30.05], Representative
data in artifact [33]

2. GE for SassCache: Paper [109.31], Representative
data in artifact [104]

3. GE for ScatterCache: Paper [100.97], Representa-
tive data in artifact [100]

4. GE for CEASER-S: Paper [90.56], Representative
data in artifact [92.0]

As evident, MIRAGE is the weakest with GE . Then
comes CEASER-S with a GE of ; key recovery is not
possible with this GE, but CEASER-S does show leak-
age. Then we have ScatterCache with a GE of 3, demon-
strating some leakage, but not exploitable. Finally, Sass-
Cache is the most resilient against our attacks.

AES data collection from scratch: We encourage the user
to try out data collection with different keys to get a
trend (and GE) closer to what is reported in the paper.
However, as also noted in the paper (footnote 21), the
rate of data collection is at best 500 observations per hour.
We were able to thereby deploy about 350 cores per Intel
Xeon server, across three such servers. The overall data
collection for all designs and multiple keys took over
2 weeks of compute hours. We thus do not include any
data collection experiment for AES in artifact evaluation
because of the abnormally high runtime of completing
the experiment.

Note that such an inhibitory rate is not a problem of at-
tack design, but rather is the consequence of the gem5
simulations (which is the go-to simulation strategy for
state-of-the-art randomized cache literature). In a realis-
tic setting (when these randomized caches are deployed
on real hardware), our attack will be much faster.

A.4.3 Plot Scripts

We also provide the scripts in scripts/ that we used to
generate the plots in the paper.

A.5 Notes on Reusability

The findings of this thereby establish an interesting open
problem: Design of a randomized cache of comparable effi-
ciency with modern set-associative LLCs, while still resist-
ing both contention-based and occupancy-based attacks. We
hypothesize that randomized caches designed around dynam-
ically changing partitions would be capable of restricting
LLC occupancy for critical workloads (thereby providing se-
curity), while also generously allowing LLC occupancy for
non-critical workloads (thereby providing better performance
in general). More research however is required to concretely
establish how such a cache design shall function, how process
requests for dynamic changes in partitioning will be han-
dled, and how to implement this design in an uncomplicated
manner. For such future research, our artifacts will enable
designers to test upcoming designs against occupancy attacks
as well.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

A.7 Acknowledgements
We would like to thank the authors of SassCache who very
generously provided us with their custom simulator for Sass-
Cache upon request, which we have adapted as part of this
artifact.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments
	Plot Scripts

	Notes on Reusability
	Version
	Acknowledgements

