
USENIX Security ’25 Artifact Appendix:
V-ORAM: A Versatile and Adaptive ORAM Framework

with Service Transformation for Dynamic Workloads

Bo Zhang†, Helei Cui†∗, Xingliang Yuan⋄, Zhiwen Yu†‡, and Bin Guo†

†School of Computer Science, Northwestern Polytechnical University, China
⋄School of Computing and Information Systems, The University of Melbourne, Australia

‡College of Computer Science and Technology, Harbin Engineering University, China
∗Corresponding author, email: chl@nwpu.edu.cn

A Artifact Appendix

This artifact includes all implemented prototypes and the
code/scripts for reproducing the major results/figures men-
tioned in the paper. We implement V-ORAM on-premise
using Python’s built-in libraries and the lightweight en-
cryption library pycryptodome. Our source code, with a
detailed README, is available at https://github.com/
BoZhangCS/V-ORAM. The entire evaluation can be performed
through simple command-line instructions. We also uploaded
the artifact to Zenodo, the DOI is http://dx.doi.org/10.
5281/zenodo.14732806.

A.1 Abstract
V-ORAM is a versatile and adaptive ORAM framework
with service transformation for dynamic workloads. The pro-
vided artifact enables efficient transformations between Path
ORAM, Ring ORAM, and ConcurORAM.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact is evaluated through publicly available
anonymized datasets and local randomized read-write. It
does not involve any security, privacy, or ethical concerns.

A.2.2 How to access

The source code of the artifact is available at https://
github.com/BoZhangCS/V-ORAM. We also uploaded the ar-
tifact to Zenodo, the DOI is http://dx.doi.org/10.5281/
zenodo.14732806.

A.2.3 Hardware dependencies

The artifact is evaluated locally without requiring hardware
beyond a general-purpose CPU (no TEE required). During

execution, the artifact persists ORAM data and maintains
metadata (e.g., PosMap). So please ensure the current direc-
tory has at least 90GB free storage and 16GB available RAM.
Our test machine is a Mac mini equipped with 512GB storage
and an M2 chip with 16GB RAM.

A.2.4 Software dependencies

The artifact has been adapted for Windows, macOS, and Linux.
We evaluated it under a macOS Sequoia 15.3.2 system. It is
implemented on Python-3.8, and we recommend using the
same version. All required third-party libraries are listed in
requirements.txt and can be installed directly via pip.

A.2.5 Benchmarks

The artifact only requires subsets of the datasets in the
real-world case study, which are already included in the ar-
tifact at data/real_workloads.zip. The full version of
three datasets are available through: MSRC: https://iotta.
snia.org/traces/block-io/388, AliCloud: https://
github.com/alibaba/block-traces, Twitter: https://
github.com/twitter/cache-trace.

A.3 Set-up
After cloning the project, please follow the steps below to set
up the artifacts (README.md#Installation).

A.3.1 Check for Storage

Please check whether the current directory has enough storage
space by running the command “df -h .”.

A.3.2 Set up the environments

Set up the virtual Python environment and install all third-
party dependencies through the following commands:

https://github.com/BoZhangCS/V-ORAM
https://github.com/BoZhangCS/V-ORAM
http://dx.doi.org/10.5281/zenodo.14732806
http://dx.doi.org/10.5281/zenodo.14732806
https://github.com/BoZhangCS/V-ORAM
https://github.com/BoZhangCS/V-ORAM
http://dx.doi.org/10.5281/zenodo.14732806
http://dx.doi.org/10.5281/zenodo.14732806
https://iotta.snia.org/traces/block-io/388
https://iotta.snia.org/traces/block-io/388
https://github.com/alibaba/block-traces
https://github.com/alibaba/block-traces
https://github.com/twitter/cache-trace
https://github.com/twitter/cache-trace
https://github.com/BoZhangCS/V-ORAM?tab=readme-ov-file#installation


pip3 install virtualenv
virtualenv .venv -python=python3.8
source .venv/bin/activate
pip3 install -r requirements.txt

A.3.3 Installation

Extract the stripped real-world datasets via commands:

cd ./data
unzip real_workloads.zip

A.3.4 Basic Test

Perform random read/write tests for prototypes:

pytest

A.4 Evaluation workflow

The artifact reproduces major plots, tables, and statistical data
in the paper. We develop scripts for each experiment, which
can be evaluated entirely through command line instructions.
All experiments can be run in parallel, except Figures 7, 9,
and 10, which require the results from Figure 5. Briefly, the
evaluation procedures are as follows:

1. Get artifact from https://github.com/BoZhangCS/
V-ORAM.

2. Set up the environment and install the necessary depen-
dencies according to README.

3. Run the experiments through the command line instruc-
tions provided in README.

A.4.1 Major Claims

(C1): V-ORAM enables efficient ORAM service transitions.
It incurs only constant-level transformation costs, which
do not scale with the number of the buckets. This is
proven by experiment (E1). It also introduces constant
extra costs to ORAM services, as proven by experiment
(E2). The storage cost of V-ORAM is n logn bits, as
shown in experiment (E3).

(C2): The planner in V-ORAM assists clients in selecting
appropriate ORAM parameters, based on the distribution
of its datasets and request. This is proven by experiments
(E4) and (E5).

(C3): V-ORAM is efficient and effectively reduces monetary
costs in real-world scenarios. The planner helps the client
decide whether to switch ORAM services. This is proven
by experiments (E6) and (E7).

A.4.2 Experiments

(E1): [Figure 4] [1 human-minutes + 1 compute-minutes]:
(E1) compares V-ORAM with the other two baselines
(D and M) mentioned in §6.1 (README.md#Figure-4).
How to: All the preparations are stated in Artifact Ap-
pendix A.3. Execute the following command to repro-
duce our results of (E1):

python3 ./artifacts/Fig4_transformation.py -pdc

Results: The communication, computation, and RTT
costs of three schemes under different ORAM sizes. Fig-
ures plotted from the results of the artifact. Comparison
of the plotted figures and the figure in the paper.

(E2): [Figure 5] [1 human-minutes + 5 compute-minutes]:
(E2) runs V-ORAM and records the costs of EvictRecord
during the process. The three types of access cost in
the figures are described in §6.2#"EvictRecord costs"
(README.md#Figure-5).
How to: All the preparations are stated in Artifact Ap-
pendix A.3. Execute the following commands to repro-
duce our results of (E2):

python3 ./artifacts/Fig5_EvictRecord_prfm.py -pdc

Results: The costs of three types of V-ORAM access
when running Ring ORAM or ConcurORAM services,
under different ORAM sizes. Figures plotted from the
results of the artifact. Comparison of the plotted figures
and the figures in the paper.

(E3): [Figure 6] [1 human-minutes + 5 compute-minutes]:
(E3) runs three ORAMs and record their stash size,
and compares it with the sizes of PosMap and RecMap
(README.md#Figure-6).
How to: All the preparations are stated in Artifact Ap-
pendix A.3. Execute the following commands to repro-
duce our results of (E3):

python3 ./artifacts/Fig6_storage_cost.py -pdc

Results: The storage costs and proportion of three
ORAMs under different ORAM sizes. Figures plotted
from the results of the artifact. Comparison of the plotted
figures and the figures in the paper.

(E4): [Figure 7] [1 human-minutes + 1 compute-minutes]:
(E4) runs three ORAMs under various system perfor-
mance requirements and estimates their monetary costs
under different bucket sizes (README.md#Figure-7).
How to: All the preparations are stated in Artifact Ap-
pendix A.3. Execute the following commands to repro-
duce our results of (E4):

python3 ./artifacts/Fig7_decision_choose_ORAM.py
-pdc

Results: The monetary costs of three ORAMs under dif-
ferent system performance requirements. Figures plotted
from the results of the artifact. Comparison of the plotted
figures and the figures in the paper.

https://github.com/BoZhangCS/V-ORAM
https://github.com/BoZhangCS/V-ORAM
https://github.com/BoZhangCS/V-ORAM?tab=readme-ov-file#figure-4
https://github.com/BoZhangCS/V-ORAM?tab=readme-ov-file#figure-5
https://github.com/BoZhangCS/V-ORAM?tab=readme-ov-file#figure-6
https://github.com/BoZhangCS/V-ORAM?tab=readme-ov-file#figure-7


(E5): [Figure 8] [1 human-minutes + 1 compute-minutes]:
(E5) compares the communication blowup of three
ORAMs under different parameters and block sizes
(README.md#Figure-8).
How to: All the preparations are stated in Artifact Ap-
pendix A.3. Execute the following commands to repro-
duce our results of (E5):

python3 ./artifacts/Fig8_opt_block_size.py -pdc

Results: The communication blowup of three ORAMs
under different parameter settings. Figures plotted from
the results of the artifact. Comparison of the plotted
figures and the figures in the paper.

(E6): [Figure 9] [1 human-minutes + 10 compute-minutes]:
(E6) evaluates V-ORAM performance under two real-
istic settings (different RTT and block sizes). The RTT
experiments are derived from the results of (E2), while
the block sizes experiments require re-running V-ORAM
(README.md#Figure-9).
How to: All the preparations are stated in Artifact Ap-
pendix A.3. Execute the following commands to repro-
duce our results of (E6):

python3 ./artifacts/Fig9_realistic_settings.py
-pdc

Results: The response time under different RTT and
the processing time under different block size. Figures
plotted from the results of the artifact. Comparison of
the plotted figures and the figures in the paper.

(E7): [Figure 10] [1 human-minutes + 1 compute-
minutes]: (E7) reads three real-world datasets
and simulates V-ORAM according to its requests
(README.md#Figure-10).
How to: All the preparations are stated in Artifact Ap-
pendix A.3. Execute the following commands to repro-
duce our results of (E7):

python3 ./artifacts/Fig10_real_world_case_studies.py
-d

Results: Established V-ORAM workloads for three
datasets. Plotted figures from three datasets. Since the
results are stable, there is no comparison.

(E8): [Figure 11] [1 human-minutes + 1 compute-minutes]:
(E8) runs V-ORAM under our two simulated workloads
and records performance during execution. These two
workloads represent dynamic throughput and latency
(README.md#Figure-11).
How to: All the preparations are stated in Artifact Ap-
pendix A.3. Execute the following commands to repro-
duce our results of (E8):

python3 ./artifacts/Fig11_simulated_workloads.py
-pdc

Results: The throughput of V-ORAM under two sim-
ulated workloads. Plotted figures from three datasets.
Since the results are stable, there is no comparison.

(E9): [Table 3] [1 human-minutes + 1 compute-minutes]:
(E9) reads the datasets, calculated statistics, and pro-
vides the estimate tree heights, recommended block
sizes, and communication blowups under Ring ORAM
(README.md#Table-3).
How to: All the preparations are stated in Artifact Ap-
pendix A.3. Execute the following commands to repro-
duce our results of (E9):

python3 ./artifacts/Tab3_real_case_study_para.py
-p

Results: The statistics and calculated results. Plotted
figures from three datasets. Since the results are stable,
there is no comparison.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://github.com/BoZhangCS/V-ORAM?tab=readme-ov-file#figure-8
https://github.com/BoZhangCS/V-ORAM?tab=readme-ov-file#figure-9
https://github.com/BoZhangCS/V-ORAM?tab=readme-ov-file#figure-10
https://github.com/BoZhangCS/V-ORAM?tab=readme-ov-file#figure-11
https://github.com/BoZhangCS/V-ORAM?tab=readme-ov-file#table-3
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Check for Storage
	Set up the environments
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


