
USENIX Security ’25 Artifact Appendix: High Stakes, Low Certainty: Evaluating
the Efficacy of High-Level Indicators of Compromise in Ransomware Attribution

Max van der Horst
Delft University of Technology

Ricky Kho
Sogeti

Olga Gadyatskaya
Leiden University

Michel Mollema
Northwave Cybersecurity

Michel van Eeten
Delft University of Technology

Yury Zhauniarovich
Delft University of Technology

A Artifact Appendix

A.1 Abstract

The artifacts included for this paper are located in a Zenodo
repository. The Zenodo repository contains the individual
appendices of the paper, such as the research protocol, the
codebook, the observed techniques per investigated threat
actor, and the CISA reports. Additionally, the gathered data
on the individual threat actors as well as the code to analyze
this data, is included. To reproduce the results of the paper,
the code in code.zip can be run by following the steps in
README.md.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The code included in the artifacts can exclusively process
the included data and will not pose any security concerns for
the users. All data has been anonymised where applicable,
and all artifacts have been produced following the ethical
considerations described in the paper.

A.2.2 How to access

All artifacts have been included in the Zenodo repository on
https://zenodo.org/records/14732551.

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

The artifacts can be used on any operating system. How-
ever, Python 3.11+ and Python Poetry1 is used. The file
pyproject.toml includes all individual dependencies that

1https://python-poetry.org

are installed by Poetry. To install these, follow the steps in-
cluded in the README.md file. Moreover, either the VSCode
IDE or Jupyter Notebook should be installed, though the note-
book is best evaluated using VSCode.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Before the file data_analysis.ipynb can be run, the sys-
tem must have Python 3.11+ available and be able to run
Poetry – a dependency manager for Python projects. Poetry
can be installed through pipx: pipx install poetry. After
installation of Poetry, the dependencies can be installed with
the command poetry install -no-root. The notebook
can best be evaluated in VSCode. If the reviewer chooses to
use Jupyter Notebook (which is another option), appropriate
dependencies have to be installed to support it.

A.3.2 Basic Test

After opening the notebook, the first cell in the notebook for
the definition of the constants can be run to verify that the
system is ready to execute the other cells.

A.4 Evaluation Workflow
The artifacts can be evaluated using the following steps.

1. Download the artifacts code.zip and data.zip from
the Zenodo repository.

2. Ensure that the VSCode IDE is installed.

3. Ensure that all dependencies have been installed using
Python Poetry.

https://zenodo.org/records/14732551
https://python-poetry.org


4. Open data_analysis.ipynb in VSCode to open the
data analysis notebook.

5. Ensure the notebook has access to the contents of
data.zip in ../data (relative to the working location
of the notebook).

6. Execute all cells in the data analysis notebook.

7. The analysis results will be stored in ../results, with
the LATEXtables being located in the tabs/ subdirectory.

A.4.1 Major Claims

The major claims in this section are mainly discussed in Sec-
tions 4.2 and 5.2 of the paper. As explained in the Ethics
section at the end of the paper, we only include data on the
quantitative analysis for review as we cannot share some data
artifacts (transcripts and reports).

High Overlap Across Different RTAs. The paper mentions
a high overlap of TTPs across different RTAs. This is proven
by the overlap similarity matrix in Table 6 of the paper. This
table can be generated by following the “Analysis” section of
the notebook, which is computed by calculating the overlap
similarity for all data points.

Inconsistent TTP Usage Within the Same RTA. Attacks
attributed to the same actor only shared, on average, about
37% of their TTPs. This is proven by following the steps in
the “Similarity between Variants of the same TA” section in
the notebook to generate the content of Table 5 in the paper.

Negative Silhouette Scores. By executing the first cell of
the “Company Data” section in the notebook, the silhouette
score calculated based on the clusters of RTAs is negative.
This indicates that TTP sets for different ransomware actors
do not define clearly separable clusters.

Coverage Gaps and Fragmentation. By executing the
code belonging to the company data and the CISA data in the
notebook, it can be seen that there are significantly differing
overlap scores for the same RTA. Given that this is a consis-
tent result for various actors and not an anomaly, it can be
suggested that not one party has a complete overview of the
data belonging to RTAs.

A.4.2 Experiments

Please find the steps to reproduce the results for the major
claims below. Each section of the results is preceded by the
first five steps as described in the Evaluation Workflow.

1. Download the artifacts code.zip and data.zip from
the Zenodo repository.

2. Ensure that the VSCode IDE is installed.

3. Ensure that all dependencies have been installed using
Python Poetry.

4. Open data_analysis.ipynb in VSCode to open the
data analysis notebook.

5. Ensure the notebook has access to the contents of
data.zip in ../data (relative to the working location
of the notebook).

High Overlap Across Different RTAs [Human time: 5
minutes, compute time: < 1 second]

1. Ensure the execution of the cells in the “Analysis” sec-
tion of the notebook to define the functions.

2. Execute the cell “Similarity between Different Families
in Company Reports”.

3. The notebook will output the mean overlap simi-
larity for different RTAs in the company reports,
and a TeX table will be generated in the file
overlap_sim_of_tas_comp.tex.

4. Overlap similarity is expressed as a value between 0
and 1, with 0 meaning that there is no overlap and 1
indicating identical values.

Inconsistent TTP Usage Within the Same RTA [Human
time: 5 minutes, compute time: < 1 second]

1. Ensure the execution of the cells in the “Analysis” sec-
tion of the notebook to define the functions.

2. Execute the cell “Similarity between Variants of the
Same TA”.

3. The notebook will output the results in the file
tavar_sim_table_comp.tex.

4. The overlap similarity in the table is expressed as a value
between 0 and 1, with 0 meaning that there is no overlap
and 1 indicating identical values.

Negative Silhouette Scores [Human time: 5 minutes, com-
pute time: < 1 second]

1. Ensure the execution of the cells in the “Analysis” sec-
tion of the notebook to define the functions.

2. Execute the first cell of the section “Company Data”.

3. The notebook will output the silhouette scores using both
Euclidean and cosine distance metrics.

4. Silhouette score is a value between -1 and 1. A lower
score indicates poorly defined clusters and a higher score
indicates well-defined clusters. The silhouette score is
negative for our data, indicating poorly defined clusters.



Coverage Gaps and Fragmentation [Human time: 5 min-
utes, compute time: < 1 second]

1. Ensure the execution of all cells in the notebook up until
the “Comparison of Techniques in CISA and Company
reports” cell.

2. The notebook will output the mean overlap
similarity and generate a TeX table in the file
comp_cisa_sim_analysis.tex.

3. Comparing the table generated in this step to the
overlap_sim_of_tas_comp.tex table from the first
major claim, it can be seen that the overlap similarities
per TA are very different. This indicates a coverage gap
and fragmentation.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation Workflow
	Major Claims
	Experiments

	Version


