
USENIX Security ’25 Artifact Appendix: Learning from Functionality
Outputs: Private Join and Compute in the Real World

Francesca Falzon
ETH Zürich, Switzerland

Tianxin Tang
Eindhoven University of Technology, Netherlands

A Artifact Appendix

A.1 Abstract
Private Join and Compute (PJC) is a two-party protocol re-
cently proposed by Google for various use-cases, including
ad conversion (Asiacrypt 2021) and which generalizes their
deployed private set intersection sum (PSI-SUM) protocol
(EuroS&P 2020). We analyze the risks associated with the
PJC functionality output, and we describe and implement four
practical attacks that break the other party’s input privacy, and
which are able to recover both membership of keys in the
intersection and their associated values.

At a high level, this artifact consists of two parts:

1. An implementation of our search tree attack, located in
the search_tree directory of our codebase.

2. Implementations of our maximum-likelihood estimation
attack, the compressed sensing attack, and the discrete
fourier transform attack, all of which are located in the
cs_dft_mle directory.

This artifact appendix describes the necessary steps for
reproducing the results presented in Section 7.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This work is compliant with the Usenix ethics guidelines. Our
work aligns with the intended use of PJC and therefore does
not expose any vulnerabilities of the protocol or underlying
cryptographic primitives.

Use of Synthetic Data. Our experiments exclusively use syn-
thetic data generated by sampling numerical values from uni-
form and normal distributions. The use of synthetic data en-
sures that no real personal information is utilized or exposed,
thereby eliminating any risks of harm to individuals or groups.

Disclosure. We reached out to Lepoint et al. (ASI-
ACRYPT 2021) and the PJC code repository maintainers1

on 19.11.2024 and 22.11.2024, respectively, to inform them
about our analysis and suggest including information about

1https://github.com/google/private-join-and-compute

our attacks in the README of the PJC code repository. They
agreed to discuss the results internally and have updated their
README2 to include links to the prior attack works and ad-
ditional information about the potential dangers of allowing
multiple protocol invocations on the same or similar input set.

A.2.2 How to access

For this evaluation process, please access the artifact using
https://doi.org/10.5281/zenodo.15147738.

A.2.3 Hardware dependencies

This artifact can be run on a commodity laptop with at least
16 GB of RAM and 32 GB of storage.

A.2.4 Software dependencies

This artifact does not require a specific OS but does rely on
the proprietary software Gurobi Optimizer. The following
steps describe how to obtain Gurobi Optimizer and the free
academic license:

1. Go to the “Gurobi User Portal” at https://portal.
gurobi.com/iam/login/ and register a new account
using your university email address. When prompted,
select “Academic”.

2. After activating and logging into your academic account,
generate your free academic license under the “Licenses”
tab by selecting the “WLS Academic” option.

3. Download the generated lisense at https://license.
gurobi.com/manager/licenses/

4. Edit the environment/shell path by running:
export GRB_LICENSE_FILE=path/to/gurobi.lic

5. Download the Gurobi Optimizer (version 11.0 or later)
that is suitable for your OS. (Tested with Gurobi Opti-
mizer version 11.0.2 build v11.0.2rc0 for mac64[arm].)

6. To verify that Gurobi Optimizer and the license are in-
stalled correctly, please run
gurobi_cl --license

2https://github.com/google/private-join-and-compute/
commit/c0cb3f5b5b616caaaef80b7f7e9c335f4fe53ce7

https://github.com/google/private-join-and-compute
https://doi.org/10.5281/zenodo.15147738
https://portal.gurobi.com/iam/login/
https://portal.gurobi.com/iam/login/
https://license.gurobi.com/manager/licenses/
https://license.gurobi.com/manager/licenses/
https://github.com/google/private-join-and-compute/commit/c0cb3f5b5b616caaaef80b7f7e9c335f4fe53ce7
https://github.com/google/private-join-and-compute/commit/c0cb3f5b5b616caaaef80b7f7e9c335f4fe53ce7

A.2.5 Benchmarks

We do not require any external dataset for our experiments
as we only use synthetic data, and we have included the data
generation as part of our artifact.

A.3 Set-up
A.3.1 Installation

Ensure you have the Gurobi Optimizer and license installed,
as described in Section A.2.4. The following instructions de-
scribe how to use a virtual python environment for the artifact
evaluation. We tested our artifact using python 3.10.15.

1. If you do not have virtualenv installed, install it with:
pip3 install virtualenv

2. Create a new virtual environment:
virtualenv myenv

3. Activate the virtual environment:
• Windows: myenv\Scripts\activate
• MacOS/Linux: source myenv/bin/activate

4. Install the dependencies:
pip3 install -r requirements.txt

A.3.2 Basic Test

1. To run a simple functionality test for the search tree
attack, run the following command from the top-level
directory:
python3 search_tree/test.py

2. For the basic test for CS, DFT and MLE attacks, navigate
to cs_dft_mle/experiment/, and run the following
command:
python3 experiment.py
../config/test_non_sparse.json
../config/test_sparse.json

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): When carrying out the search-tree attack (described
in Section 4 of our paper), increasing the partition size
generally resulted in fewer queries with some exceptions.
Notably, target set size |T |= 103 and partition set size
ℓ= 26 resulted in fewer queries than ℓ= 28 for all values
of intersection ratio ρ tested; additionally, when ℓ= 210,
we have that ℓ≥ |T |, and thus all values are recovered
with exactly one query. Similar trends are observed for
|T | = 104 and |T | = 105. This is proven by the experi-
ment (E1) described in Section 7.1 of our paper whose
results are illustrated in Figure 3.

(C2): We implemented our recovery methods, maximum
likelihood estimation (MLE), discrete fourier transform
(DFT), and compressed sensing (CS) using the Gurobi
Optimizer. We then ran experiments for both noiseless

and noisy recoveries using synthetic data with value
ranges of [−100,100] and [−1000,1000]. We report the
recovery results over five runs, with statistics for the
value range [−1000,1000] shown in Table 2 (noise-
less) and Table 3 (noisy); results for the value range
[−100,100] are presented in Table 4 (noiseless) and Ta-
ble 5 (noisy) in the Appendix. We describe the steps
to reproduce our results in Experiment E2 and briefly
describe our observations below.
MLE. We focus on non-sparse recovery using MLE by
setting the intersection size equal to the target set size.
We observed that even after 0.95n queries for n targets,
there is still some ℓ1 loss in value recovery. This loss
increases significantly when the value range is expanded
to [−1000,1000] (see Tables 2 and 3). Moreover, adding
noise to each query result (i.e., inner product) does not
significantly affect the losses.
DFT. Our results indicate that DFT recovery performs
very well in certain experiments. It consumes signifi-
cantly less time compared with other methods. However,
it can be unstable and is not robust to noise.
Compressed Sensing (CS). In the noiseless setting, both
CS-ℓ1 and CS-ℓ2 achieve exact recovery for intersection
ratios up to 0.2 with high probability. CS-ℓ1 is more
scalable than CS-ℓ2; for CS-ℓ2, we were only able to
scale up to n = 2000 using Gurobi (with our table report-
ing n = 1000). For noisy recovery, both methods show
robustness to truncated Gaussian noise with standard
deviation σ ∈ {2.5,5}.

A.4.2 Experiments

(E1): Search Tree Attack Experiment [5 human-minutes +
50 compute-minutes (Short Experiment)/7.34 compute-
hours (Full Experiment) + 5GB disk]. Time estimates
are based on running the experiments on a 16GB Apple
M2 Pro.
Preparation: Make sure to follow the setup steps de-
scribed in Appendix A.3 of this writeup. Before running
this experiment, create the directory in which the results
will be stored by running the command:
mkdir results
Execution: To run the experiments for the search
tree attack, run the following commmand from the
search_tree directory of the repository:
python3 benchmark.py NUM-RUNS parameter
where NUM-RUNS is a positive integer denoting how many
times to run the attack for each parameter setting and
PARAMS takes on the value of either part (which runs an
abbreviated set of parameters and which can run in <1hr
on a commercial laptop) or full (which runs the full set
of parameters reported in our paper). For example, the
command
python3 benchmark.py 1 part

specifies running the benchmarks for the abbreviated set
of parameters for 1 run per parameter setting.
Results: To reproduce the graphs, first navigate to
results-part.tex (if running the abbreviated parame-
ter selection) or results-full.tex (if running the full
parameter selection) and compile the LaTeX document.
These documents pull the data from results and print
the graphs depicted in Figures 3 and 7.

(E2): Noiseless and noisy recovery using CS, DFT and MLE
[5 human-minutes + 4 compute-hours] To save evalua-
tion time, we set the number of iterations to 1:
Preparation: Ensure that you have completed the setup
steps described in Appendix A.3. Work within the
cs_dft_mle directory. Navigate to the experiment di-
rectory. Remove the results directory if it exists due
to basic test using rm results.
Execution:

1. (15 compute-minutes) Follow the following steps
to produce results for target set size n ∈ {102,103}:
python3 experiment.py
../config/e1_non_sparse.json
../config/e1_sparse.json
It outputs a results directory containing CSV files
that report the results.

2. (3 compute-hours) The following step produces re-
sults for n = 104 (excluding the CS-ℓ2 for noisy
recovery, as explained in the paper):
python3 experiment.py
../config/e2_non_sparse.json
../config/e2_sparse.json --exclude
This updates the CSV files in the results directory.

Results: To generate the LaTeX tables from the results,
run the following command:
python3 gen_tex_table.py 1000
(Optional) If pdflatex is installed, you can preview the
generated tables using the following command:
pdflatex gen_table_pdf.tex
This generates gen_table_pdf.pdf that contains two
tables similar to Table 2 and Table 3 presented in our
paper.
Optional: For Table 4 and Table 5 in the Appendix,
which differ in value range from [−1000,1000] to
[−100,100] and noise magnitude, the evaluation steps
are similar. First backup the results directory using
mv results results_1000
then run the following commands:
python3 experiment.py
../config/e3_non_sparse.json
../config/e3_sparse.json
and
python3 experiment.py
../config/e4_non_sparse.json
../config/e4_sparse.json --exclude
and finally

python3 gen_tex_table.py 100
(Optional) If you have pdflatex installed, you can
preview the tables using the following command:
pdflatex gen_table_pdf.tex

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

