
USENIX Security ’25 Artifact Appendix: CoreCrisis: Threat-Guided and
Context-Aware Iterative Learning and Fuzzing of 5G Core Networks

Yilu Dong, Tianchang Yang, Abdullah Al Ishtiaq, Syed Md Mukit Rashid, Ali Ranjbar,
Kai Tu, Tianwei Wu, Md Sultan Mahmud, Syed Rafiul Hussain

The Pennsylvania State University
{yiludong, tzy5088, abdullah.ishtiaq, szr5848, aranjbar, kjt5562, tvw5452, mqm7099, hussain1}@psu.edu

A Artifact Appendix

A.1 Abstract

We present CoreCrisis, a context-aware black-box testing
framework for 5G Core Network (5GC) implementations.
Considering the stateful nature of network protocols, Core-
Crisis adopts a state-aware strategy to navigate the implemen-
tation effectively. Unlike previous security analysis efforts of
cellular networks which rely on manually-crafted, static test-
ing symbols and are limited to identifying only logical errors,
CoreCrisis implements a dynamic two-step approach. Ini-
tially, CoreCrisis builds an initial finite state machine (FSM)
representation of the 5GC’s implementation using only be-
nign symbols (expected inputs) with its novel divide-and-
conquer and property-driven equivalence-checking learning.
During testing, it utilizes the learned FSM to target under-
explored states and introduces attacking symbols (mutated
inputs). Based on the responses observed from the Core Net-
work, CoreCrisis continuously refines the FSM to better guide
its exploration. Evaluating CoreCrisis on four 5GC systems,
including both commercial and open-source implementations,
we identified 7 categories of deviations from the technical
specifications and 13 crashing vulnerabilities. These logical
and crashing vulnerabilities could lead to denial-of-service
(DoS), authentication bypass, and billing fraud.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Our artifact is available at Zenodo: https://zenodo.org/
records/15043603. We also hosted on GitHub: https://
github.com/SyNSec-den/CoreCrisis.

A.2.3 Hardware dependencies

Our artifact does not have specific hardware requirements.
However, if the processor is not fast enough or the system
does not have enough memory, the artifact may run into issues.
The experiment E1 requires the system to have at least 32GB
of memory.

A.2.4 Software dependencies

We tested the artifact on Ubuntu >= 20.04, other Linux distri-
butions may also work.

To run the experiments, docker, JDK11, GCC, and python3
must be installed in the system.

Detailed instructions to install these dependencies are pro-
vided inside the artifact.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

First, the required files should be downloaded from Zenodo
or GitHub. Then, follow the readme file in the main folder
and each subfolder to build and run the program.

A.3.2 Basic Test

A basic functional test can be conducted by running the Core-
Fuzzer. By following the readme files, the program should
successfully run in a docker container with terminal outputs.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The property-driven equivalence checking reduced the
number of queries needed to learn the state machine,
described in Section 6.3.1 in the paper. We show this in
(E1).

https://zenodo.org/records/15043603
https://zenodo.org/records/15043603
https://github.com/SyNSec-den/CoreCrisis
https://github.com/SyNSec-den/CoreCrisis


(C2): CORECRISIS has been used to identify new bugs in
5G core network implementations, as shown in Table 2
in the paper. This can be proven by (E2).

(C3): We compared CORECRISIS against other fuzzers, as
shown in Section 6.2 in the paper. This can be proven by
(E3).

A.4.2 Experiments

(E1): [Property-driven equivalence checking] [1 human-hour
+ 15 compute-hour]:
How to: The difference can be seen by enabling and
disabling the Property-driven equivalence checking in
state machine learning.
Preparation: Follow the instructions in Corelearner
folder to run the program one time.
Execution: We provided the equivalence checking
queries under the folder “CEStore”. The evaluator should
run the state machine learning with the in lines in “input”
and check “learner.log” for the number of queries. Then
the evaluator should repeat the steps with an empty input
file and and check learner.log again.
Results: By checking the logs and the learned state
machine, the number of queries should be significantly
reduced if Property-driven equivalence checking is en-
abled.

(E2): [CoreFuzzer] [1 human-hour + 24 compute-hour]:
How to: The evaluator should follow the instructions and run

the CoreFuzzer.
Preparation: Follow the instructions and build the docker

containers for CoreFuzzer.
Execution: Enter the docker container and run the file

“run_hourly.py”. The database files used for logging the
results should appear in the “logs” folder.

Results: The database file should indicate some crashes from
the core network implementation.

(E3): [Comparison with other fuzzers] [1 human-hour + 24
compute-hour]:

How to: The evaluator should follow the instructions and run
the CoreFuzzer along with other fuzzers provided for 24
hours to compare the coverage numbers.

Preparation: Follow the instructions and build the docker
containers for each fuzzers.

Execution: Enter the docker containers and run the file
“run_hourly.py”. The coverage information should ap-
pear in the “logs” folder.

Results: Our implementation should outperform all the com-
pared implementations.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at

https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


