
USENIX Security ’25 Artifact Appendix: TLBlur: Compiler-Assisted
Automated Hardening against Controlled Channels on Off-the-Shelf Intel

SGX Platforms

Daan Vanoverloop1, Andrés Sánchez*2,4, Flavio Toffalini2,3, Frank Piessens1, Mathias Payer2, and
Jo Van Bulck1

1DistriNet, KU Leuven, 2EPFL, 3RUB, 4Amazon

A Artifact Appendix

A.1 Abstract
We provide the automated mitigation pipeline, including
LLVM and BOLT instrumentation passes, a modified Intel
SGX SDK that includes our custom prefetcher, as well as the
benchmark applications to evaluate performance overhead.
To assess leakage in practice, we furthermore provide an in-
dependent reproduction of the controlled-channel attack on
libjpeg and a profiler tool to seamlessly extract page-access
traces from victim enclaves.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This artifact includes attacks on real-world Intel SGX proces-
sors, which require the installation of the privileged SGX-Step
kernel module. We recommend that evaluators run all code
on an isolated test machine.

The attack and mitigation code in this artifact is intended
solely for reproducing our results. Any use of these results
should be conducted responsibly. The mitigation is a research
prototype, and we do not recommend its deployment in pro-
duction environments as-is.

A.2.2 How to access

The artifact files are available on Zenodo (https:
//doi.org/10.5281/zenodo.15194120) and GitHub
(https://github.com/TLBlur-SGX/tlblur/tree/
usenix-artifact).

A.2.3 Hardware dependencies

Building and running TLBlur requires hardware with support
for Intel SGX2 and AEX-Notify.

*All the contributions of this author were made prior to joining Amazon.

A.2.4 Software dependencies

• A Linux distribution supported by the Intel SGX SDK.
We recommend using Ubuntu 22.04.

• C/C++ compiler (gcc or clang) and linker (lld strongly
recommended)

• Build tools: make, cmake, meson and ninja.

• Stable Rust toolchain (1.76 or later)

A.2.5 Benchmarks

No external benchmarks were used for our evaluation.

A.3 Set-up

A.3.1 Installation

Download artifact. Clone the repository with all submod-
ules.

$ git clone --recurse -submodules \
--branch usenix -artifact \
https://github.com/TLBlur -SGX/tlblur.git

Build. Run build.sh to build and install LLVM with TL-
Blur instrumentation passes, the Intel SGX SDK with TLBlur
prefetcher, SGX-Step, benchmark enclaves and tools.

Load SGX-Step. Load the SGX-Step kernel module by
running make clean load in sgx-step/kernel.

A.3.2 Basic Test

1. Run the test program with an enclave binary, e.g.
./install/bin/test-rsa ./install/lib/s-encl-rsa-

↪→ instrumented-relocs-bolt-opt.so. Output should
contain the following, indicating that the attack
succeeded:

https://doi.org/10.5281/zenodo.15194120
https://doi.org/10.5281/zenodo.15194120
https://github.com/TLBlur-SGX/tlblur/tree/usenix-artifact
https://github.com/TLBlur-SGX/tlblur/tree/usenix-artifact

[../enclaves/rsa/main.c] secure enclave
↪→ encrypted ’1234’ to ’21921’; decrypted
↪→ ’1234’

[../enclaves/rsa/main.c] --> RECONSTRUCTED KEY
↪→ ’20771’ (0x5123)

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): A practical profiler (§7.2) to extract enclave page-
access traces (Figures 5, 9 and 10).

(C2): A reproduction of the seminal controlled-channel at-
tack by Xu et al. on libjpeg, and demonstrate that it still
leaks with AEX-Notify single-stepping defense (Figures
1 and 8).

(C3): An automated compiler pipeline (§6) that reduces in-
formation leakage observable to controlled-channel ad-
versaries by “blurring” page-access traces (§9.1).

(C4): An average slowdown of ×2.24 from instrumentation
across a variety of benchmark programs (§9.2.1, §9.2.3,
Figure 6 and Table 3).

(C5): An interrupt-resumption overhead that scales linearly
with the size of the PWS and the size of the enclave
(§9.2.2, Figure 7).

A.4.2 Experiments

(E1): [Profiler] [10 human-minutes + 10 compute-minutes]:
extract a page-access trace from libjpeg.
Preparation: Run cd sgx-step/app/libjpeg.
Execution: Run the profiler as follows:
$ sudo ../profiler/target/release/sgx_tracer \

--so ./profiler -libjpeg.so \
-e ./Enclave/encl.so \
--output trace.vcd \
--args img/birds.jpg 10000000 10000000

Collecting the full trace can take up to several hours.
Interrupt the program after a few minutes.
Results: The partial trace in the trace.vcd file can be
opened in a VCD viewer like GTKWave. This demon-
strates the practicality of using the profiler to extract
page-access traces and, thus, validates C1.

(E2): [Attack on libjpeg] [10 human-minutes + 3 compute-
hours]: reconstruct libjpeg image with page-fault attack.
Preparation: Run cd sgx-step/app/libjpeg/attack.
Execution: Run the attack as follows:
$ cargo run --release -- -o reconstruct.bmp \

-i ../img/Wapiti_from_Wagon_Trails.jpg \
--color enclave \
-e ../Enclave/encl.so

The attack can take several hours to complete, but
progress is indicated by the progress bar.
Results: The resulting reconstruct.bmp file should con-
tain a reconstruction of the original image, as in Figure 1,
validating C2.

(E3): [Prefetching simulation] [10 human-minutes + 30
compute-minutes]: use the instrumented binary to evalu-
ate the effectiveness of TLBlur.
Preparation:
$ export TLBLUR_LIB="$PWD/install/lib"
$ cd sgx-step/app/libjpeg

Execution: Run the profiler as follows:
$ sudo \

../profiler/target/release/sgx_tlblur_sim \
--so $TLBLUR_LIB/libprof -libjpeg.so \
-e $TLBLUR_LIB/s-encl -libjpeg -instrumented -

↪→ relocs -bolt.so \
--output trace_30.vcd \
--args img/birds.jpg 10000000 10000000 \
--pws-size 30 --irq-pat page -fault \
--hw-tlb set-associative \
--ways 8 --sets 1024

This will run the profiler with the instrumented libjpeg
binary and a PWS size of 30, simulating the effect of
TLBlur with a set-associative hardware TLB with 8 ways
and 1024 sets. Collecting the full trace can take up to sev-
eral hours. Interrupt the program after around 30 minutes
have passed to collect sufficiently long traces.
Results: The partial trace in the trace_30.vcd file can be
opened in a VCD viewer like GTKWave. Compared to
the trace from E1, page-access patterns are “blurred”, as
in Figure 10, validating C3. Note that the binary instru-
mentation pass moves code to higher addresses, hence
the code pages start at page 5120 instead.

(E4): [Instrumentation benchmarks] [10 human-minutes +
2 compute-hours]: run performance benchmarks to mea-
sure instrumentation overhead.
Preparation: Ensure that all benchmark enclave bina-
ries are installed in install/lib. Each benchmark pro-
gram and combination of optimizations shown in Table
3 has a corresponding .so file in this directory. Refer
to the table in the README for the naming scheme of
enclave files. Change to the evaluation directory.
Execution: To run the benchmarks, execute the
run_benchmarks.sh script. This may take several hours
to complete.
Results: The results can be found in the out directory.
Run ./plot.py to reproduce Figure 6. Set FULL_PLOT =

↪→ True in plot.py to reproduce Table 3, validating C4.
(E5): [Interrupt-resumption benchmark] [10 human-minutes

+ 5 compute-minutes]: benchmark the interrupt-
resumption overhead.
Preparation: Run the following to prepare the mi-
crobenchmark:
$ cd prefetch -benchmark
$ source /opt/intel/sgxsdk/environment
$ make clean all

Configure the enclave size in Enclave/encl.config.xml.
Execution: The run.sh script executes the microbench-
mark for varying PWS sizes, and a fixed PAM size based

on the configured enclave size.
Results: The results can be found in the out directory.
Repeat the experiment with different enclave sizes to
obtain results for varying PAM sizes. Run ./plot.py to
reproduce Figure 7, showing linearly scaling overhead
in both PWS and PAM size and, thus, validating C5.

A.5 Notes on Reusability

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

