
USENIX Security ’25 Artifact Appendix: TORCHLIGHT: Shedding
LIGHT on Real-World Attacks on Cloudless IoT Devices Concealed

within the Tor Network

Yumingzhi Pan†, Zhen Ling†*, Yue Zhang‡, Hongze Wang†, Guangchi Liu†, Junzhou Luo†, Xinwen Fu§

†Southeast University, Email: {pymz, zhenling, wanghongze, gc-liu, jluo}@seu.edu.cn
‡Drexel University, Email: yz899@drexel.edu

§University of Massachusetts Lowell, Email: xinwen_fu@uml.edu

A Artifact Appendix

A.1 Abstract
This artifact is the public source release of TORCHLIGHT
which is designed to detect both known and unknown threats
targeting cloudless IoT devices by analyzing Tor traffic.
TORCHLIGHT consists of three components:

• Tor Exit Traffic Collector: Real-time capture and storage
of external traffic on a resource-constrained VPS, with
offline filtering on a campus NAS. Artifacts released:
node deployment guidelines, offline traffic filtering code.

• Deployment Planner: Optimized VPS resource alloca-
tion for effective traffic monitoring. Artifacts released:
Tor weighted bandwidth algorithm, Tor exit deployment
strategy code.

• LLM-based IoT Traffic Analyzer: IoT traffic identifi-
cation and detection of four attack types using a Large
Language Model. Artifacts released: IoT traffic identifi-
cation and attack detection code, sample data.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Executing this artifact does not involve security, privacy, or
ethical concerns. For ethical reasons, we will not make the Tor
exit traffic we collected publicly available. However, in order
to help evaluators in testing the IoT traffic identification and
attack detection functionalities, we have released a portion of
sample data in accordance with the Menlo Report:

1. This data set excludes any information that could poten-
tially reveal personal or identifiable details—including
the Host field, cookies, and software version fingerprints.

*Corresponding author: Prof. Zhen Ling of Southeast University, China.

2. For attack detection sample data, these malicious re-
quests solely exploit N-day vulnerabilities that have al-
ready been patched.

Please refer to these samples in the ./sample_data directory
in the artifact.

Furthermore, to facilitate researchers in validating the func-
tionality of the data preprocessing scripts, we have down-
loaded several test PCAP files from publicly accessible
websites and repositories (including SampleCaptures and
PCAPS). Please refer to the ./test_pcaps folder to access
the test PCAP files.

A.2.2 How to access

The code, Tor exits deployment guidelines, and test data
are available on Zenodo: https://zenodo.org/records/
14742809.

A.2.3 Hardware dependencies

GPU. For our LLM-based IoT traffic analyzer, GPUs with
at least 48GB of memory (such as NVIDIA A40, A6000,
and A100) are required to meet the memory demands of the
quantized Llama 70B model.

A.2.4 Software dependencies

Python Package. All necessary Python packages for our
LLM-based IoT traffic analyzer are listed in the corresponding
requirements_<dir>.txt files.

• IoT Traffic Identification

– Python version: Python 3.9.17

– Install dependencies in the ./iot_
identification directory

– Install and extract the exllama repository. After
extraction:

./sample_data
https://wiki.wireshark.org/SampleCaptures
https://github.com/markofu/pcaps
./test_pcaps
https://zenodo.org/records/14742809
https://zenodo.org/records/14742809
./iot_identification
./iot_identification
https://github.com/turboderp/exllama


* Copy these Python files to iot_
identification folder: model.py,
generator.py, cuda_ext.py, lora.py,
and tokenizer.py

* Copy the entire exllama_ext directory

• Attack Detection

– Python version: Python 3.9.19

– Install dependencies in the ./attack_detection
directory

• Preprocessing

– Install dependencies in the ./preprocessing di-
rectory

Environment Recommendation Due to version discrep-
ancies in Python (3.9.17 vs 3.9.19) and potential dependency
conflicts between components, we strongly recommend using
separate virtual environments through Conda environments
or Python virtualenv.

Open-Source LLM Models. For IoT Traffic Identifica-
tion, it is necessary to download a quantized Llama 2 70B
model(released at https://huggingface.co/TheBloke/
Llama-2-70B-Chat-GPTQ). For Attack Detection, a quan-
tized Llama 3.1 70B model is required for download
(released at https://huggingface.co/hugging-quants/
Meta-Llama-3.1-70B-Instruct-AWQ-INT4).

A.2.5 Benchmarks

Tor Exit Sample Data. Due to the sensitivity of Tor exit
traffic, the raw data we collected will not be made publicly
available. However, in order to help evaluators in testing the
IoT traffic identification and attack detection functionalities,
we have released a portion of sample data in accordance
with the Menlo Report. Please refer to these samples in the
./sample_data directory in the artifact.

Test Pcaps. To facilitate researchers in validating the func-
tionality of the data preprocessing scripts, we have down-
loaded several test PCAP files from publicly accessible
websites and repositories (including SampleCaptures and
PCAPS). Please refer to the ./test_pcaps folder to access
the test PCAP files.

A.3 Set-up
A.3.1 Installation

The installation steps are explained in detail in the README.md
file. Specifically,

Tor Exit Traffic Collector. For detailed instructions
on deploying Tor exits and collecting Tor external traf-
fic data, please refer to deployment_guideline.md in
./deployment directory.

Deployment Planner. Download the latest Tor consen-
sus file. One optional source for downloading is https:
//torstatus.rueckgr.at/, which converts the consensus
file into a CSV format, making it easier to process.

LLM-based IoT Traffic Analyzer. Install the depen-
dencies using the requirements_<dir>.txt files in the
./iot_identification and ./attack_detection direc-
tories.

A.3.2 Basic Test

The execution steps are explained in detail in the README.md
file.

Tor Exit Traffic Collector. Users can run Suricata, Tor,
lsyncd, iptables, and ipset to test if the software components
are functioning fine.

Deployment Planner. Users can execute
calculate_weights.py to verify the correct download of
the consensus file.

LLM-based IoT Traffic Analyzer. Users can run the fol-
lowing commands to see if the Python packages have been
installed successfully.

1 import torch
2 from transformers import AutoModelForCausalLM, AutoTokenizer,

AwqConfig↪→
3 import pandas as pd
4 from model import ExLlama, ExLlamaCache, ExLlamaConfig
5 from tokenizer import ExLlamaTokenizer
6 from generator import ExLlamaGenerator
7 import httplib2
8 from googleapiclient.discovery import build

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Tor Exit Traffic Collector captures and storages of ex-
ternal traffic in real-time on a resource-constrained VPS.
(§6.2 “Traffic Distribution”)

(C2): Deployment Planner optimizes VPS resource alloca-
tion for effective traffic monitoring. (§6.2 “Traffic Distri-
bution”, §6.2 “Effectiveness” and Figure 4)

(C3): LLM-based IoT Traffic Analyzer leverages a LLM to
determine if the response data originates from IoT de-
vices, thereby identifying IoT traffic. (§6.2 “Accuracy”,
§6.3 and Table 3, 4)

(C3): LLM-based IoT Traffic Analyzer prompts the LLM
to detect four types of attacks. (Appendix A.2 “Perfor-
mance”, §6.4 and Table 5, 7)

A.4.2 Experiments

Please refer to the README.md file in the repository for de-
tailed steps of our experiments.
(E1): [Tor Exit Traffic Collector] [30 human-minute + 10

compute-minute + 2GB disk]:

iot_identification
iot_identification
./attack_detection
./preprocessing
https://anaconda.org/anaconda/conda
https://virtualenv.pypa.io/
https://huggingface.co/TheBloke/Llama-2-70B-Chat-GPTQ
https://huggingface.co/TheBloke/Llama-2-70B-Chat-GPTQ
https://huggingface.co/hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4
https://huggingface.co/hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4
https://wiki.wireshark.org/SampleCaptures
https://github.com/markofu/pcaps
./test_pcaps
https://torstatus.rueckgr.at/
https://torstatus.rueckgr.at/


Preparation & Execution: Please refer to the detailed
instructions on deploying Tor exits and collecting
Tor external traffic in deployment_guideline.md in
./deployment directory. For offline filtering, please
refer to “Attack Detection Preprocessing” in the
README.md file.
Results: Tor Exit Traffic Collector shoud be able to col-
lect Tor external traffic and preprocess the traffic into
appropriate formats for LLMs.

(E2): [Deployment Planner] [10 human-minute + 2
compute-minute]:
Preparation: Download the latest Tor consensus file
as detailed in A.3.1.
Execution: To compute the bandwidths E and D,
and determines weights Wee and Wed based on
three distinct network conditions, please execute
deployment/calculate_weights.py. Then, execute
deployment/deploy_strategy.py to formulate the
deployment plan (There are example node options in-
cluded in the script).
Results: Deployment Planner shoud be able to generate
a deployment plan that optimizes VPS resource alloca-
tion for effective traffic monitoring.

(E3): [IoT Traffic Identification] [2 human-hour + 10
compute-minute + 50GB disk]:
Preparation: (i) Activate the IoT Traffic Iden-
tification virtual environment as specified in
the A.2.4 section. (ii) Obtain an API key and
search engine ID for Google Custom Search
Engine(https://programmablesearchengine.
google.com). (iii) Utilize the data provided in the
iot_identification_sample_data.csv file in
./sample_data directory.
Execution: After entering iot_identification di-
rectory, run the following four sequential steps:

• Step I: It preliminarily identify IoT names within
the response data. (01a, 01b)

1 python 01a_llama_ner_initial.py
2 python 01b_extract_result_from_initial.py

• Step II: It re-verifies the IoT entities to address
potential hallucinations. (02a, 02b)

1 python 02a_llama_ner_second_round.py
2 python 02b_extract_result_from_second_round.py

• Step III: It leverages a search-engine-based re-
triever to complete potentially missing vendor and
type names based on the identified model names.
(03a, 03b, 03c)

1 python 03a_retrieve_google_search.py
2 python 03b_llama_ner_google_search.py
3 python 03c_extract_result_from_google_search_ll ⌋

amaed.py↪→

• Step IV: It ensures that the traffic truly originates
from IoT devices. (04a, 04b)

1 python 04a_llama_ner_device_traffic_check.py
2 python 04b_extract_result_from_device_traffic_c ⌋

heck.py↪→

Results: Upon successful execution of Step IV, the final
<OUTPUT_FILE> will contain LLM-identified IoT traf-
fic entries, along with their corresponding predictions
for vendor (pred_vendor), device type (pred_type),
and/or model (pred_model).

(E4): [IoT Attack Detection] [2 human-hour + 10 compute-
minute + 50GB disk]:
Preparation: (i) Activate the IoT Traffic Identi-
fication virtual environment as specified in the

A.2.4 section. (ii)Utilize the data provided in
the attack_detection_sample_data.csv file in
./sample_data directory.
Execution: • Command injection detection.

1 python llama_command_injection.py
2 python extract_llama_command_injection.py

• FTP anomaly detection.

1 python llama_ftp_anomaly.py
2 python extract_llama_ftp_anomaly.py

• Path traversal detection.

1 python llama_path_traversal.py
2 python extract_llama_path_traversal.py

• Information disclosure detection.

1 python llama_information_disclosure.py
2 python extract_llama_information_disclosure.py

Results: (i) The output file from llama_<attack_
type>.py contains the LLM’s complete response to this
specific attack type. This includes whether the LLM iden-
tified the input as an attack and its subsequent analysis,
recorded in the <attack_type>_pred_line column.
(ii) The extract_llama_<attack_type>.py script ex-
tracts the LLM’s core answer ("yes" or "no") regarding
the attack and stores it in the <attack_type>_pred_
result column.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://programmablesearchengine.google.com
https://programmablesearchengine.google.com
llama_<attack_type>.py
llama_<attack_type>.py
<attack_type>_pred_line
extract_llama_<attack_type>.py
<attack_type>_pred_result
<attack_type>_pred_result
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


