ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: Assuring Certified Database
Utility in Privacy-Preserving Database Fingerprinting

Mingyang Song!, Zhongyun Hua!, Yifeng Zheng?, Tao Xiang?, Guoai Xu!, and Xingliang Yuan*

LSchool of Computer Science and Technology, Harbin Institute of Technology, Shenzhen
2Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University
3College of Computer Science, Chongqing University
4School of Computing and Information Systems, University of Melbourne

A Artifact Appendix

A.1 Abstract

We provide the source code used for experimental evaluations,
along with a roadmap for deploying and executing the source
code. The open source code includes three parts: (i) the source
code for dataset extraction and encoding, (ii) the source code
of UtiliClear, and (iii) the source code for robustness and util-
ity testing. The experiments in the paper involve evaluating
efficiency, fingerprint robustness, and database utility. The
efficiency evaluation results can be obtained during the exe-
cution of the source code of UtiliClear, while the results of
fingerprint robustness and database utility can be obtained by
executing the third part of the artifact.

A.2 Description & Requirements

This section outlines the required setups for executing the
artifact. Before running the code, please set up the execution
environment according to the following hardware and soft-
ware configurations. Afterward, follow the execution steps
presented in the artifact precisely to run the source code.

A.2.1 Security, privacy, and ethical concerns

The artifact involves neither malicious nor destructive oper-
ations. It poses no risk to machines security, data privacy or
others ethical concerns for evaluators while executing the
artifact.

A.2.2 How to access

The artifact and detailed deployment roadmap for executing
UtiliClear are now available at Zenodo.

A.2.3 Hardware dependencies

Any testing environment is sufficient to reproduce only the
overall efficiency trends. However, to reproduce the similar
efficiency results in the paper, two desktops, each equipped
with a 24-core Intel Core 19-13900 processor and 16GB of
memory, are required to execute the source codes for the
database owner and recipient, respectively.

A.2.4 Software dependencies

The source code rely on standard cryptographic li-
braries, including, OpenSSL, PBC, GMP, and MySQL. The
dataset used for evaluation is available for download at
https://nijianmo.github.io/amazon/index.html.

A.2.5 Benchmarks

We evaluate UtiliClear using the Amazon Review Data.

A.3 Set-up
Install Visual Studio 2015 and PyCharm 2021.3.1.

A.3.1 Installation

Before running the programs, the libraries of OpenSSL-
3.0.4-Win32, PBC-0.5.14-Win32, GMP-Win32, and MySQL-
5.1.51-Win32 should be installed and included in the pro-
grams

A.3.2 Basic Test

To run a simple functionality test, one can use the encoded
subset (186 MB) along with its corresponding dictionary files
provided in the artifact. With this small dataset, the first part
(i.e., dataset extraction and encoding) can be skipped. Directly
use the small subset as the input to execute the second part


https://zenodo.org/records/14731665
https://docs.openssl.org/3.4/man7/
https://crypto.stanford.edu/pbc/
https://gmplib.org
https://downloads.mysql.com/archives/installer/
https://nijianmo.github.io/amazon/index.html
https://nijianmo.github.io/amazon/index.html

(i.e., the source code of UtiliClear). Before executing the pro-
grams, we recommend setting the number of group to 400,
the bit-length of insignificant bits to 1, and the number of
modifiable bits to 8. Then run the source code following the
execution roadmap provided by the readme file of the arti-
fact. Both the code files ’Com_Verify_Recipient.cpp’ and ’In-
significantBits_Verify3_Recipient.cpp’ will output ’success’,
indicating that software components are correctly utilized and
functioning fine.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): During the preprocessing and verification phases, the
time costs for both the recipient and the database owner
increase with the number of groups and the number of in-
significant bits. In contrast, during the fingerprint embed-
ding and extraction phases, the database owner’s compu-
tation time increases with the number of insignificant bits
but remains unaffected by the number of groups. This is
demonstrated by the experiment (E1), whose results are
reported in Figures 7-8.

(C2): During the preprocessing phase, the communication
overhead increase with the number of groups and the
number of insignificant bits. In contrast, during the ver-
ification phase, the communication overhead increases
with the number of insignificant bits. This is demon-
strated by the experiment (E1), whose results are re-
ported in Figure 9.

(C3): More groups cause smaller data sizes per group, reduc-
ing memory requirements for both the database owner
and the recipient. This is demonstrated by the experiment
(E1), whose results are reported in Table 2.

(C4): UtiliClear achieves comparable fingerprint robustness
and database utility with the state-of-the-art scheme.
This is demonstrated by the experiment (E2), whose
results are reported in Figures 12-14.

A.4.2 Experiments

(E1): It takes approximately 10 hours to obtain a single ex-
perimental result and several days are needed to obtain
all the efficiency evaluation results presented in Section
6.2 using the suggested hardware configuration above.
How to: Use the first part of the source code to process
the database, then take the encoded database as input to
execute the second prat of the source code.
Preparation: Before executing the code, set the param-
eters (e.g., the ratio of removed records, the ratio of
added records, and the ratio of flipping bits) in code
files.

Execution: Use the first part of the source code to pro-
cess the database and obtain encoded databases. Follow-
ing the detailed roadmap described in the open artifact,

execute the source code of UtiliClear to obtain the ex-
perimental results.

Results: Track the execution time of the code to obtain
the computational time consumption. For communica-
tion consumption, monitor the files exchanged between
the recipient and the database owner. To observe memory
cost during code execution using Visual Studio.

(E2): It takes approximately two days to obtain the experi-
mental results of fingerprint robustness. Four days are
needed to obtain the results of database utility.

How to: Use the outputs (i.e., fingerprinted databases)
of the source code of UtiliClear to evaluate database
utility and fingerprint robustness by executing the third
part of the source code.

Preparation: Before executing the code, set the param-
eters in each code file and ensure the consistency of
parameter settings in all code files.

Execution: Following the detailed roadmap described
in the open artifact, execute the third part code files to
test the fingerprint robustness and database utility.
Results: Obtain the fingerprint robustness results by
comparing the fingerprint extracted from the databases
under various types of attack with the original finger-
print. To obtain the database query result, decode the
fingerprinted database and import the decoded dataset
and the original dataset into the MySQL database, and
then test the SQL query results. One code file (i.e., ’Clas-
sifier_Training.py’) is provided to train and evaluate the
classifier’s accuracy.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.


https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


