
USENIX Security ’25 Artifact Appendix: Surviving in Dark Forest:
Towards Evading the Attacks from Front-Running Bots in Application

Layer

Zuchao MA

A Artifact Appendix

A.1 Abstract

Real-world strategies for evading front-running remain under-
explored in their taxonomy and distribution due to their covert
nature. Understanding these evasion tactics is vital for as-
sessing the resilience of the current blockchain application
layer and identifying areas for potential enhancement, thereby
strengthening the ecosystem. In this work, we take the first
step to demystify evading strategies in Ethereum and BNB
Smart Chain. We propose EVScope, a novel framework com-
bining binary analysis and machine learning to detect known
and unknown evading strategies. The artifact includes the
source code of EVScope, the transactions that adopt evading
strategies, and the guidance to recreate results and run tools.
The goals to be reproduced in the artifact evaluation include:
• Our findings uncover 32 refined strategies involving access
control, profit control, execution split, and code obfuscation
(Table 3 in RQ1).
• The F1-measure of EVScope reaches 0.97 on average (Table
4 in RQ4).
• We develop a straw-man approach (SA) as the baseline to
conduct the comparison with EVScope. The F1-measure of
SA reaches 0.30 on average (Table 4 in RQ4).
• The clustering accuracy in iterations (Figure 14 in RQ4).

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The original artifact can be accessed in
https://zenodo.org/records/14735789. In the artifact
availability evaluation, reviewers provide some useful
comments to optimize our readme file, and I update
the readme file in the artifact to create version V2
(https://zenodo.org/records/14778705).

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

Please use Ubuntu OS and docker for executing the artifact.
In our prepared docker image evasion.tar, we already set
all software dependencies.

A.2.5 Benchmarks

The dataset of evading strategies is in
src_rqs.zip/RQs/dataset. We also prepare the dataset in
the docker image evasion.tar, which means that reviewers
have no need to collect dataset.

A.3 Set-up
A.3.1 Installation

Installing docker in Ubuntu OS, for example docker 27.3.1.

A.3.2 Basic Test

Use the command to check whether docker has been installed.
docker -version
The expected output should be like
Docker version XXX (e.g., 27.3.1), build YYY
(e.g., ce12230)
Import docker image by the command
sudo docker load < evasion.tar
Then you can see the image id of the image by the command
sudo docker images
Assume the image id is [image-id]. Start the container by the
command
sudo docker run -itd -name evasion [image-id]
We can see the container id of the container by the command
sudo docker ps
Assume the container id is [container-id]. Go into the con-
tainer by command
sudo docker attach [container-id]
After going into the container, please start mongodb database
for querying results by the command



mongod -f /etc/mongod.conf &

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Our findings uncover 32 refined strategies involving
access control, profit control, execution split, and code
obfuscation. This is proven by the experiment described
in in Section 5.2 (RQ1) whose results are illustrated in
Table 3.

(C2): The F1-measure of EVScope reaches 0.97 on average.
This is proven by the experiment described in Section
5.5 (RQ4) whose results are illustrated in Table 4.

(C3): We develop a straw-man approach (SA) as the base-
line to conduct the comparison with EVScope. The F1-
measure of SA reaches 0.30 on average. This is proven
by the experiment described in Section 5.5 (RQ4) whose
results are illustrated in Table 4.

(C4): The clustering accuracy increases in iterations. This is
proven by the experiment described in Section 5.5 (RQ4)
whose results are illustrated in Figure 14. Considering
terminal interface cannot illustrate the figure, the artifact
prints the points of the curves of Figure 14 in terminal
for review.

A.4.2 Experiments

(E1): [1 human-minute + 5 compute-minutes + 60GB disk]:
run two scripts to generate the content of Table 3 to two
csv files. Then use cat command to show the content of
Table 3 on the terminal.
Preparation: In the container, go into the folder
/home/ubuntu/RQs by the command
cd /home/ubuntu/RQs
Execution: Execute the script gen_table.py to gener-
ate a table.csv file that contains line 1 to 24, line 26
to 30 of Table 3, by the command
python3 gen_table.py
Execute the script gen_tab_lock.py to generate a
table_lock.csv file that contains line 25, line 31 to
32 of Table 3, by the command
python3 gen_tab_lock.py
Results: Print the content of table.csv to terminal by
the command
cat table.csv
Then compare the content of terminal with Table 3 (line
1 to 24, line 26 to 30) of the paper to check the result.
Print the content of table_lock.csv to terminal by the
command
cat table_lock.csv
Then compare the content of terminal with Table 3 (line
25, line 31 to 32) of the paper to check the result.

(E2): [1 human-minute + 1 compute-minute]: run a script to
generate the content of Table 4 (EVScope row).

Preparation: In the container, go into the folder
/home/ubuntu/RQs by the command
cd /home/ubuntu/RQs
Execution: Execute the script precision.py to gen-
erate the the result of EVScope row in Table 4, by the
command
python3 precision.py
Results: Compare the content of terminal with Table 4
(EVScope row) of the paper to check the result.

(E3): [1 human-minute + 1 compute-minute]: run a script to
generate the content of Table 4 (Straw-man row).
Preparation: Go into the folder /home/ubuntu/RQs
by the command
cd /home/ubuntu/RQs
Execution: Execute the script strawman.py to gener-
ate the the result of Straw-man row in Table 4, by the
command
python3 strawman.py
Results: Compare the content of terminal with Table 4
(Straw-man row) of the paper to check the result.

(E4): [1 human-minute + 1 compute-minute]: run a script to
generate the content of Figure 14.
Preparation: Go into the folder /home/ubuntu/RQs
by the command
cd /home/ubuntu/RQs
Execution: Execute the script cluster_accuracy.py
to generate the the data points in Figure 14, by the com-
mand
python3 cluster_accuracy.py
Results: Compare the data points of terminal with Fig-
ure 14 of the paper to check the result.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


