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A Artifact Appendix

A.1 Abstract
This artifact appendix accompanies our paper and provides
all necessary resources to evaluate the proposed attack. It
includes detailed instructions to reproduce the major claims,
such as the motivation for our work, as well as the implemen-
tation of sample-level and universal attacks. Additionally, we
outline the hardware, software, and configurations required
for successful evaluation.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our artifact poses no security or privacy risks to evaluators’
systems. However, we advise evaluators to handle the gener-
ated adversarial examples responsibly.

A.2.2 How to access

We host our artifacts at Zenodo: https://doi.org/10.
5281/zenodo.14735820.

A.2.3 Hardware dependencies

Running our code requires an NVIDIA GPU with at least
24GB of VRAM. For reference, we used an NVIDIA GeForce
RTX 4090 GPU in our experiments. No specific hardware
beyond the GPU is necessary; our setup included Intel(R)
Xeon(R) Gold 6133 CPU and 256GB of RAM.

A.2.4 Software dependencies

We conducted our experiments on Ubuntu 20.04.3 LTS with
NVIDIA Driver Version 525.105.17, CUDA Version 12.0

and Python 3.10.13. Details on additional software dependen-
cies and information about datasets and models used in our
experiments can be found in the README file.

A.2.5 Benchmarks

Datasets. We use several popular speech datasets: Common
Voice, TIMIT, and LibriSpeech. Additionally, we include
two widely used speech translation datasets: MuST-C and
Europarl-ST. The download URLs and dataset splits are de-
tailed in the README file provided with our artifacts.
Models. We target the Seamless family of models, specif-
ically evaluating Seamless M4T v2 Large and Seam-
less Expressive. Model details and download instructions
are available in their official repository (https://github.
com/facebookresearch/seamless_communication). Ad-
ditionally, we use the 51-languages-classifier model from Hug-
ging Face for automated language classification. Commands
for downloading it are included in the README file.

A.3 Set-up

A.3.1 Installation

Here are the steps to install the required dependencies and
run our code. For detailed instructions and commands, please
check the README file provided with our artifacts.

1. Install seamless_communication and other dependen-
cies by running commands in the README file.

2. Prepare the pretrained Seamless models by following
the README instructions. Note that the Hugging Face
library will automatically download the Seamless M4T
v2 Large model, but you must complete the Meta request
form to access the Seamless Expressive model.
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3. Download the datasets with the provided URLs in the
README file. Pay attention to the path where you save
the datasets and update it in the config file if necessary.

A.3.2 Basic Test

We prepared a python script to run a simple functionality test.
The script can be run using the following command:

python BasicTest.py --gpu_id 0

This script is designed to generate an adversarial exam-
ple with sample-level attack. Upon successful execution, the
script is expected to present a text output beginning with "The
basic test has been successfully completed."

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): State-of-the-art multilingual speech translation sys-
tems exhibit an inherent vulnerability, where they tend
to output content in the source language instead of the
target language. This claim is demonstrated through ex-
periment (E1) in Section 3, "Motivation," of our paper,
with results illustrated in Figure 6 and Figure 17.

(C2): Sample-level untranslation attacks effectively generate
adversarial examples that deceive models into outputting
the original speech content in the source language with
high success rates. This is supported by experiment (E2)
in Section 6.2, "Sample Level Attack," of our paper, with
results reported in Table 2.

(C3): Universal untranslation attacks can be used to train a
universal adversarial perturbation that manipulates the
model to output the original speech content in the source
language when appended to the original speech. This is
proven by experiment (E3) in Section 6.3, "Universal
Attack," of our paper, with results shown in Table 6.

A.4.2 Experiments

(E1): [Motivation] [25 human-minutes + 5 compute-minutes
+ 24GB RAM]: In this experiment, we demonstrate the
vulnerability of state-of-the-art multilingual speech trans-
lation systems to untranslation attacks. We show that
these systems tend to output the original speech content
in the source language. The details of this experiment
can be found in the "Vulnerability of Untranslation" sec-
tion of our paper. The expected outcome is to observe
that the average logits value of source language tokens
is significantly higher than the average logits value of
target language tokens.
Preparation: Install the required dependencies and
download the datasets and models as described in Sec-
tion A.3.

Execution: Run the following command:
python MotivationExp.py --gpu_id 0
Results: The expected outcome is to observe that the
average logits value for tokens of the original content in
the source language is significantly higher than for other
tokens. Additionally, a plot of the distribution of logits
values similar to Figure 6 and Figure 17 in our paper will
be generated in the ./plot folder.

(E2): [Sample-level Attack] [25 human-minutes + 10 com-
pute -hours + 24GB RAM]: In this experiment, we use
the proposed sample-level attack to generate adversarial
examples that manipulate the models into outputting the
original speech content in the source language. Details
can be found in Section 6.2, "Sample Level Attack," of
our paper. The expected outcome is to observe a high
success rate of the attack.
Execution: Run the following command:
python SampleLevelAttackEval.py --gpu_id 0
Results: The expected outcome is to observe the attack
process for each sample, with results including success
rate, time cost, and other details.

(E3): [Universal Attack] [25 human-minutes + 36 compute-
hours + 24GB RAM]: In this experiment, we use the
proposed universal attack to train a universal adversarial
perturbation that manipulates the models into outputting
the original speech content in the source language by
appending the perturbation to the original speech. We
then evaluate the success rate of the perturbation on an
evaluation dataset. Details can be found in Section 6.3,
"Universal Attack," of our paper. The expected outcome
is to observe a high success rate of the attack.
Execution: Run the following command to train the
universal perturbation:
python UniversalAttackTrain.py --gpu_id 0
Then, run the following command to evaluate the univer-
sal perturbation:
python UniversalAttackEval.py --gpu_id 0
Results: During the training process, the expected out-
come is to observe the progress of the universal pertur-
bation training. After training, the perturbation will be
saved in the ./universal_perturbation folder. Dur-
ing the evaluation process, the expected outcome is to
observe the attack process of the universal perturbation.

Please note that you can always use the -h flag with each
script to check the available options and parameters. Also,
refer to the README file in the artifacts for detailed instruc-
tions and commands.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.
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