
USENIX Security ’25 Artifact Appendix: SparSamp: Efficient Provably
Secure Steganography Based on Sparse Sampling

Yaofei Wang, Weilong Pang

A Artifact Appendix

A.1 Abstract
This artifact provides the implementation of SparSamp, an
efficient provably secure steganography method for generative
models. It includes code for embedding/extracting messages
in text generation tasks using large language models (e.g.,
GPT-2, Qwen-2.5, Llama-3) and supports evaluation metrics
such as embedding speed, decoding accuracy, and embedding
rate. The artifact reproduces the key results in the paper,
including:

• High embedding rate approaching information entropy

• High embedding speed with O(1) time complexity per
sampling step

• Preservation of original probability distributions

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

SparSamp is a dual-use technology. Users must comply with
ethical guidelines and local laws when applying it.

A.2.2 How to access

• Repository: Available on Zenodo with DOI: 10.5281/zen-
odo.15025436

A.2.3 Hardware dependencies

• CPU: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz

• GPU: RTX 4090 × 1

• Memory: 128GB

A.2.4 Software dependencies

• Python: 3.8.5

• Libraries:

– torch==2.2.2

– transformers==4.41.2

A.2.5 Benchmarks

• Datasets: IMDB text samples (first 3 sentences per sam-
ple)

• Models:https://huggingface.co/

– GPT-2: openai-community/gpt2

– Qwen-2.5: Qwen/Qwen2.5-3B-Instruct

– Llama-3: meta-llama/Llama-3.1-8B-Instruct

A.3 Set-up

A.3.1 Installation

1. Download the repository.

2. Install dependencies.

3. Download models (e.g., GPT-2).

A.3.2 Basic Test

Here, we can test the embedding and extraction functions
of SparSamp in an example without using GPU, as shown
below:

1. Enter folder [Basic Test]

2. Run the default configuration in main.py: python main.py

3. Expected Output: As shown in Figure 1.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): SparSamp achieves 100% decoding accuracy with mes-
sage segment lengths lm ≤ 1023 (Section 4.3, Table 2).

(C2): High embedding rate approaching information en-
tropy(Section 4.3, 4.5, 4.7, Table 2, 4, 7).

(C3): High embedding speed(Section 4.3, 4.4, 4.7, Table 2,
3, 7).



Figure 1: Expected Output of the Basic Test

A.4.2 Experiments

Enter folder [Experiments/src] for running batch data

Download the pre-trained language model to
your local machine in advance. Then, modify
the params_dict[’model_path’] param-
eter in the get_statistics function within
get_statistics.py to match the actual storage
path.

(E1): Decoding Accuracy Validation [10 human-minutes + 1
compute-hour + 20GB disk]: Verify 100% decoding ac-
curacy for message segment lengths lm ≤ 1023. Expected
results: Success for all cases (Table 2).
Preparation: Ensure the model and tokenizer are
loaded correctly. Run Python and set different
block_size values to verify the extraction rate.
Execution: Run the following commands:
block_sizes = [2, 4, 8, 16, 32, 64, 128,
256, 512, 1023]
result_list = []
for block_size in block_sizes:

cur_result = get_statistics(’sparsamp’,’1.0’,
block_size,’gpt2’)
result_list.append(cur_result)

pd.Dataframe(result_list).to_excel(
"result.xlsx",index=False)

Results: Check the correct_decoded_rate in
the logs or result.xlsx. Expected: 1 for all cases.

(E2,E3): Embedding rate and embedding speed verification
[20 human-minutes + 3 compute-hour + 20GB disk]:
Expected results: Utilization ≥ 93% (Table 3, 4, 7).
Preparation: Run Python and set different top_p val-
ues to verify the embedding rate and embedding speed.
Execution: Run the following command:
top_ps = [0.80, 0.95, 1.00]
result_list = []
for top_p in top_ps:

cur_result = get_statistics(’sparsamp’,
top_p,64,’gpt2’)
result_list.append(cur_result)

pd.Dataframe(result_list).to_excel(
"result.xlsx",index=False)

Results: Compare the embedding_rate,
utilization, Embedding_Speed,
Decoding_Speed, ATST, Generation_Speed
and SITR with Table 3, 4, 7.

Note the problems that hardware may cause: Since some
computers may cause floating-point precision issues, the cu-
mulative probabilities may not match exactly. We ignore this
issue and use the stored SE values from encoding during the
decoding.



A.5 Notes on Reusability

• New Models: To integrate other models (e.g., Llama-3),
modify model_path in get_statistics.py.

• Custom Messages: Replace message_bits.txt
with any binary file.

• Multi-modal Support: SparSamp can be integrated with
any model that provides explicit probability distribu-
tions by simply replacing the sampling component with
SparSamp’s embedding function.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


