ARTIFACT
EVALUATED EVALUATED
susenix susenix

ASSOCIATION @ Association

ARTIFACT

AVAILABLE

USENIX Security 25 Artifact Appendix: SparSamp: Efficient Provably
Secure Steganography Based on Sparse Sampling

Yaofei Wang, Weilong Pang

A Artifact Appendix
A.1 Abstract

This artifact provides the implementation of SparSamp, an
efficient provably secure steganography method for generative
models. It includes code for embedding/extracting messages
in text generation tasks using large language models (e.g.,
GPT-2, Qwen-2.5, Llama-3) and supports evaluation metrics
such as embedding speed, decoding accuracy, and embedding
rate. The artifact reproduces the key results in the paper,
including:

* High embedding rate approaching information entropy

* High embedding speed with O(1) time complexity per
sampling step

* Preservation of original probability distributions

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns
SparSamp is a dual-use technology. Users must comply with

ethical guidelines and local laws when applying it.

A.2.2 How to access

* Repository: Available on Zenodo with DOI: 10.5281/zen-
0do.15025436

A.2.3 Hardware dependencies

e CPU: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
e GPU: RTX 4090 x 1
* Memory: 128GB

A.2.4 Software dependencies

e Python: 3.8.5
e Libraries:

- torch==2.2.2

— transformers==4.41.2

A.2.,5 Benchmarks
* Datasets: IMDB text samples (first 3 sentences per sam-
ple)
* Models:https://huggingface.co/

— GPT-2: openai-community/gpt2

- Owen-2.5: Qwen/Qwen2.5-3B-Instruct

— Llama-3: meta-llama/Llama-3.1-8B-Instruct

A.3 Set-up

A.3.1 Installation

1. Download the repository.
2. Install dependencies.

3. Download models (e.g., GPT-2).

A.3.2 Basic Test

Here, we can test the embedding and extraction functions
of SparSamp in an example without using GPU, as shown
below:

1. Enter folder [Basic Test]
2. Run the default configuration in main.py: python main.py

3. Expected Output: As shown in Figure 1.

A.4 Evaluation workflow
A4.1 Major Claims

(C1): SparSamp achieves 100% decoding accuracy with mes-
sage segment lengths I, < 1023 (Section 4.3, Table 2).

(C2): High embedding rate approaching information en-
tropy(Section 4.3, 4.5, 4.7, Table 2, 4, 7).

(C3): High embedding speed(Section 4.3, 4.4, 4.7, Table 2,

37).

(base) XXX@mac Artifact_sparsamp % python3 main.py
Using device: cpu

=== Initialization Phase ===

Message length padded to 1792 bits

Number of message bits used: 1792

model_name:../sparsamp_test/gpt/

Failed to load model locally, load GPT-2 directly from Transformers library
Model loaded successfully

=== Encoding Phase ===

Generated steganographic text: When it came to languages, VF Native is
trying to use VF Native by showing different ways it is implementing it. I
suppose that these suggestions are too short, and I suppose that in my
opinion here VF Native not only gives what is really needed but also allows
to form an executable program that is portable for permanent use in native

platforms (and if you need to run VF Native, there are also uses for laro!).

VF Native as design
VF Native is designed with the N project as a strategic starting point for

=== Save and Verification Phase ===
Steganographic text saved to: stega_text.txt
Whether there is Token Ambiguity: No

=== Decoding Phase ===

=== Evaluation Results ===

Experimental Settings - Model: ../sparsamp_test/gpt/, Top-p: 0.95, Message
Segment Length (1_m): 64

Embedded 512 bits message in the generated 112 tokens
Message decoding result: Success

ATST: 2.86e-02 s/token

SITR: 0.00

Generation Speed: 34.9 tokens/s

Embedding Rate: 4.57 bits/token

Utilization: 94.7%

Embedding Speed: 161.0 bits/s

Decoding Speed: 177.3 bits/s

Figure 1: Expected Output of the Basic Test

A.4.2 Experiments

Enter folder [Experiments/src] for running batch data

Download the pre-trained language model to
your local machine in advance. Then, modify
the params_dict [’model_path’] param-
eter in the get_statistics function within
get_statistics.py to match the actual storage
path.

(E1): Decoding Accuracy Validation [10 human-minutes + 1
compute-hour + 20GB disk]: Verify 100% decoding ac-
curacy for message segment lengths I,, < 1023. Expected
results: Success for all cases (Table 2).

Preparation: Ensure the model and tokenizer are
loaded correctly. Run Python and set different
block_size values to verify the extraction rate.
Execution: Run the following commands:
block_sizes = [2, 4, 8, 16, 32, 64, 128,
256, 512, 1023]
result_list = []
for block_size in block_sizes:
cur_result = get_statistics(’sparsamp’,’
block_size,’gpt2’)
result_list.append(cur_result)
pd.Dataframe (result_list).to_excel(
"result.xlsx", index=False)

Results: Check the correct_decoded_rate in
the logs or result.x1sx. Expected: 1 for all cases.
(E2,E3): Embedding rate and embedding speed verification
[20 human-minutes + 3 compute-hour + 20GB disk]:
Expected results: Utilization > 93% (Table 3, 4, 7).
Preparation: Run Python and set different t op_p val-
ues to verify the embedding rate and embedding speed.
Execution: Run the following command:
top_ps = [0.80, 0.95, 1.00]
result_list = []
for top_p in top_ps:
cur_result = get_statistics(’sparsamp’,
top_p, 64, gpt2’)
result_list.append(cur_result)
pd.Dataframe (result_list).to_excel (
"result.xlsx", index=False)

Results: Compare the embedding_rate,
utilization, Embedding_Speed,
Decoding_Speed, ATST, Generation_Speed
and SITR with Table 3, 4, 7.

Note the problems that hardware may cause: Since some
computers may cause floating-point precision issues, the cu-
mulative probabilities may not match exactly. We ignore this
issue and use the stored SE values from encoding during the
decoding.

A.5 Notes on Reusability

* New Models: To integrate other models (e.g., Llama-3),
modify model_pathin get_statistics.py.

e Custom Messages: Replace message_bits.txt
with any binary file.

e Multi-modal Support: SparSamp can be integrated with
any model that provides explicit probability distribu-
tions by simply replacing the sampling component with
SparSamp’s embedding function.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

