
USENIX Security ’25 Artifact Appendix: Synthesis of Code-Reuse
Attacks from p-code Programs

Mark DenHoed
University of Oxford

Tom Melham
University of Oxford

A Artifact Appendix

A.1 Abstract

Our artifact is composed of four components:

• jingle: a Rust library for modeling the semantics of
a fragment of p-code, the Intermediate Language of
the Ghidra decompiler, in the language of Satisfiability
Modulo Theories (SMT).

• crackers: a Rust library for synthesizing Code Reuse
Attacks (aka. ROP Chains) from a simple p-code pro-
gram using models produced by jingle and a conflict-
driven search powered by a Boolean Satisfiability (SAT)
solver.

• Our evaluation setup comparing the performance of
crackers to several open-source ROP synthesis tools.
We include our raw data, utilities to generate our charts
and tables, and the code needed to re-run the entire eval-
uation.

• A case-study demonstrating the use of crackers in syn-
thesizing a ROP chain for CVE-2017-14493: a simple
Remote Code Execution vulnerability in dnsmasq.

We include standalone copies of jingle and crackers for
the record. While evaluators may install and use these tools,
bundled copies of these libraries are used internally by our
ROP tool evaluation and case-study. The standalone copies
are not necessary to evaluate the claims of the paper. We will
indicate instructions for the optional usage of these tools with
the heading jingle and crackers (optional).

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our artifacts pose no risk to evaluator’s machines.

A.2.2 How to access

Our artifacts can be accessed via Zenodo using the DOI
10.5281/zenodo.14738160

A.2.3 Hardware dependencies

While our real-world exploitation case-study is dockerized, it
requires an ARM CPU due to its usage of GDB and ptrace.
We tested it on an Apple M1 processor.

We don’t require any specific CPU for jingle, crackers,
or our ROP tool evaluation. As many of the evaluated tools use
SMT Solvers, we recommend that our ROP tool evaluation be
run on a system with at least 32 Gigabytes of RAM. We also
recommend that at least 15 gigabytes of disk space reserved
for Docker due to the large number of built containers.

A.2.4 Software dependencies

The ROP tool evaluation and the dnsmasq case study both
run fully inside Docker and make use of Docker Compose,
so Docker must be installed. We additionally recommend the
Just command runner to simplify the usage of our Docker
Compose setup, but this is not mandatory.

jingle and crackers (optional). Both tools require that
the system have both the Ghidra and Z3 to be installed to run.
If using a macOS system, the version of Z3 in Homebrew will
work; if using a Debian-based linux, we recommend using
the build distributed by the Z3 project, as Debian distributes a
very outdated version of Z3. Additionally, both these libraries
require the Rust compiler to be installed as well as your plat-
form’s standard C/C++ compiler/linker. We have used both
tools on both x86 and ARM, as well as linux and macOS. The
tools should work on Windows systems as well, but we have
not verified this outside of a CI pipeline.

A.2.5 Benchmarks

Our ROP tool evaluation uses the ALLSTAR data-set as a
source of test binaries. We do not include this dataset in the
artifacts due to its size. Instead, our evaluation code retrieves
binaries from JHU/APL’s hosted version of the data-set as
needed. These files are saved temporarily within a docker
container and deleted afterwards to minimize the needed
disk space. An active internet connection is therefore needed
throughout the evaluation.

https://doi.org/10.5281/zenodo.14738160
https://just.systems/
https://ghidra-sre.org
https://github.com/Z3Prover/z3/releases
https://rustup.rs
https://allstar.jhuapl.edu


A.3 Set-up
A.3.1 Installation

ROP Tool Evaluation. In the crackers_evaluation
folder, verify docker is running with docker --version and
attempt to build all the images used in the evaluation with
docker compose build. This will build a container for ev-
ery ROP tool and algorithm ablation evaluated in the paper.
The docker build should succeed with no errors.

dnsmasq Case Study (ARM ONLY). In the
dnsmasq_poc/arm64 folder, run docker compose
--profile poc build. This should build both a con-
tainer with a vulnerable version of dnsmasq and a container
named poc containing a tool for exploiting this vulnerablity
using crackers. The docker build should succeed with no
errors.

jingle and crackers (optional). Install Rust, Z3, and
Ghidra from the links provided above. Find the root directory
for each tool (the highest one with a Cargo.toml file inside it).
Now, for jingle, run cargo install --path ./jingle
--features="bin_features". For crackers, run cargo
install --path . --features="bin". There should
now be two new binaries in your path, named jingle and
crackers.

A.3.2 Basic Test

The basic ROP tool evaluation setup can be tested first by ex-
ecuting just restore or by manually running the following
commands:

docker compose down redis
docker run -d --rm --name temp \

-v crackers_evaluation_cache:/data \
ubuntu sleep infinity

docker cp evaluation_data.rdb \
temp:/data/dump.rdb

docker stop temp
docker compose up redis -d

This loads our original evaluation data into the testing in-
frastructure. Our original graphs can be produced by running:

docker compose run --rm grapher \
all-tool.svg combined all-tool

docker compose run --rm grapher \
ablation.svg combined ablation

This should produce two SVG files containing the charts
from the paper with our results from (E1) and (E2). Clear
the database of our evaluation data by running just
cleanup_db or by manually running docker compose
exec redis redis-cli flushall.

To verify that the dnsmasq case-study is ready, run docker
compose up dnsmasq to verify that dnsmasq was built and
runs.

jingle and crackers (optional). jingle can be easily
tested with the following command: jingle disassemble
<path_to_ghidra> x86:LE:64:default 55. This should
produce the output PUSH RBP. Replace disassemble with
lift to see the p-code associated with this x86 in-
struction, or with model to see jingle’s SMT model-
ing of this p-code. To test crackers, you can use a
sample that is provided in the crackers directory. First,
edit crackers/sample_config.toml and ensure that the
ghidra_path parameter points to your Ghidra installation.
You can then run crackers synth sample_config.toml
and verify that crackers finds a ROP chain.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): crackers matches or exceeds the performance of
the evaluated state-of-the-art ROP chain synthesis tools
across a wide corpus of binaries. This is proven by the
experiment (E1) described in Section 5.1 whose results
are illustrated in Figure 3 and Table 1.

(C2): crackers matches or exceeds the performance of the
evaluated algorithm ablations across a subset of our cor-
pus of binaries. This is proven by the experiment (E2)
described in Section 5.2 whose results are illustrated in
Figure 4 and Table 2.

(C3): crackers is capable of synthesizing a working ROP
chain within the constraints of a real-world vulnerabil-
ity. This is proven by the experiment (E3) described in
Section 5.3.

A.4.2 Experiments

(E1): ROP Tool Comparison [1 human hour + 2 compute-
weeks + 30GB Disk + 32GB RAM]: A comparison be-
tween crackers and several ROP chain synthesis tools
over a large corpus of binaries demonstrating crackers’
equivalent or superior run-time performance and success-
rate.
How to: This evaluation is performed through our
docker-based testing infrastructure. Each ROP tool is
evaluated in its own docker container with results au-
tomatically reported and organized in a shared redis
database. We recommend executing the tools serially to
avoid multiple tools’ memory and CPU usage confound-
ing timing measurements. We also provide dockerized
tools to export the contents of the database into charts
and tables of the kind used in our paper, allowing for
easy comparison with our results.



Preparation: No additional configuration is required
beyond the items already covered in previous sections.
Execution: This evaluation compares crackers to
three other ROP tools: angrop, exrop, and SGC. To run
this evaluation, you will run one docker command per
tool in series (the commands themselves are explained in
more detail in a README in our artifacts). In our eval-
uation, runtimes of each command ranged from around
12 hours to 10 days.
Results: Once the evaluations have finished, you can
run our dockerized charting and statistics utilities to pro-
duce a version of Figure 3 and Table 1 derived from your
new data. These reporting commands can also be run
from another terminal at any time during the experiment.
This allows for monitoring of progress and truncated
runs. The commands to use these dockerized utilities are
explained in more detail in the README.
Due to known malformed data in the ALLSTAR dataset,
the evaluation runner will periodically fail to decode a
package, indicated by the message “error decoding
response body”. This is expected and does not affect
the results of the evaluation.
The test runner may occasionally fail to fetch an
ALLSTAR package due to networking issues. We
include a command to identify binaries in the
crackers dataset that are missing from that of another
ROP tool. Run docker compose run --rm stats
missing <tool> to receive a summary of missing bi-
naries for the given tool, as well as docker commands to
re-attempt evaluation of those specific test cases.

(E2): Ablation Study [1 human hour + 2 compute-weeks
+ 15GB Disk + 32GB RAM]: This experiment eval-
uates crackers relative to two algorithmic ablations:
crackers_a and crackers_b.
How to: This experiment uses the same Docker Com-
pose setup as (E1), run over a separate set of Docker
containers, each containing an ablation of crackers.
Preparation: As in (E1), no additional configuration is
required beyond the items already covered in previous
sections.
Execution: Like (E1), this experiment is conducted by
executing several long-running docker commands. In
our evaluation, runtimes of each command ranged from
around 12 hours to 10 days.
Results: These results are validated using the same
method as in (E1). The chart and table produced by
this experiment can be compared to Figure 4 and Table
2 respectively.

(E3): Exploitation Case Study [15 human-minutes + 15GB
Disk + 15 compute-minutes (ARM ONLY)]: This ex-
periment demonstrates the use of crackers in an ex-
ploitation tool targeting dnsmasq (CVE-2017-14493).
We configure crackers to synthesize a ROP chain that
cleanly exits the program with a controlled exit code,

without throwing any signals.
How to: This evaluation is also performed using
Docker Compose-based infrastructure, located in
dnsmasq_poc/arm64. A vulnerable dnsmasq service
is started in a container, listening for DHCP6 requests
on a non-standard port. Our exploitation tool is run in
a separate docker container, targeting the private IPV6
docker network address of the dnsmasq container. The
container with the exploitation tool uses crackers to
synthesize a ROP chain, which it uses to construct a
DHCP6 packet that it sends to dnsmasq. If all works
correctly, dnsmasq exits with our chosen error code.
Preparation: As in (E1) and (E2), no additional config-
uration is required beyond the items already covered in
previous sections.
Execution: This is most easily executed with the Just
command runner. First, start the dnsmasq container and
connect its dnsmasq service to GDB by running just
debug. Once gdb is attached, run just poc in another
shell. This will build the exploit tool (if you have not
already built the container), and begin synthesis of a
ROP chain for the dnsmasq binary.
Results: When synthesis completes successfully, it will
fire off the DHCP6 packet. You should observe dnsmasq
exit cleanly without tripping GDB.

A.5 Notes on Reusability
Both jingle and crackers were written to enable further
usage. Both tools are standalone Rust crates, exposing pro-
grammatic APIs as well as simple command-line tools.

Our Rust API for ALLSTAR is also written as a standalone
Rust crate, and so can easily be used or extended in other
applications.

Our ROP tool evaluation setup makes very few assump-
tions about the tools it runs and could easily be extended with
additional ROP tools. It could also be easily adapted to mea-
sure run-time performance of any program analysis tool over
portions of the ALLSTAR dataset.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


