ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: Sound of Interference:
Electromagnetic Eavesdropping Attack on Digital Microphones Using
Pulse Density Modulation

Arifu Onishi*

The University of Electro-Communications

Rishikesh Bhatt
University of Florida

Sara Rampazzi
University of Florida

A Artifact Appendix

A.1 Abstract

As described in the paper, we discovered a new side-channel
attack on pulse density modulation (PDM) digital MEMS
microphones which are used in common laptops and IoT
devices. In the paper, discover that each harmonic of these
digital pulses retains acoustic information, allowing the orig-
inal audio to be retrieved through simple FM demodulation
using standard radio receivers, even in behind-the-wall sce-
narios. In this artifact appendix, we provide spoken digits and
spoken sentence audio data reconstructed by the attack across
various devices using a 14-element Yagi antenna, a magnetic
loop antenna, and a cheap antenna made from copper foil. The
artifacts also include the scripts to fine-tune and evaluate the
HuBERT transformer model for digit and speaker recognition
and evaluate the data with HuBERT, OpenAl, and Microsoft
speech transcription models required to reproduce the results
described in the paper (more specifically, the outcome of the
analysis depicted in Tables 4, 5, 6, 7, and 8 of the paper).

A.2 Description & Requirements

The artifact contains scripts (and models) to fine-tune Trans-
former models for speech recognition, API scripts for infer-
ring and evaluating speech transcription.

A.2.1 Security, privacy, and ethical concerns

Our artifact is non-destructive, and there is no security or
privacy risk to the evaluators when the training, fine-tuning,
and inference models.

A.2.2 How to access

Our research artifacts, including the speech transcription re-
sults and training log files for digit and speaker classification
models, along with the corresponding recorded audio files

S. Hrushikesh Bhupathiraju*
University of Florida

Takeshi Sugawara
The University of Electro-Communications

for the tested devices and the scripts for training and fine-
tuning the pipeline we used for our speech recognition and
transcription models are available at: https://zenodo.org/
records/14736347.

We include a README file in the repository to guide
the reviewers through the setup of the environment, and the
information regarding the provided data corresponding to the
experiment in the paper.

A.2.3 Hardware dependencies

We build our recognition models by fine-tuning HuBERT
transformer models on our dataset. To effectively fine-tune
HuBERT models, you typically need a GPU with at least
16GB of VRAM. Our model was fine-tuned on a single Nvidia
A100 GPU (40 GB), with a fine-tuning duration of approxi-
mately 45 minutes.

A.2.4 Software dependencies

There is no dependency on the Operating System used
by the user. To run the inference codes, the user needs
access to Python 3 (above 3.8), conda environment with
the following Python packages: pytorch==2.4.0, torchvi-
sion==0.19.0, torchaudio==2.4.0, pytorch-cuda=11.8, pandas,
scipy, tqdm, matplotlib, seaborn, scikit-learn, transformers,
openpyxl, PyWavelets, librosa, datasets, openai, and azure-
cognitiveservices-speech.

Detailed instructions to setup the conda environment and
the python libraries are included in the README file avail-
able at: https://zenodo.org/records/14736347. Note
that running the OpenAl and Microsoft APIs for speech tran-
scription models requires paid subscriptions and the API keys.
The HuBERT transcription model on the other hand can be
implemented and evaluated using the provided scripts.

https://zenodo.org/records/14736347
https://zenodo.org/records/14736347
https://zenodo.org/records/14736347
https://zenodo.org/records/14736347
https://zenodo.org/records/14736347
https://zenodo.org/records/14736347

A.2.5 Benchmarks

All the data required for the artifacts are available at the pro-
vided link.

A.3 Set-up
A.3.1 Installation

Run the following commands to configure the conda environ-
ment.

* conda create -y —name Sol python==3.8.19
¢ conda activate Sol

* conda install pytorch==2.4.0 torchvision==0.19.0 tor-
chaudio==2.4.0 pytorch-cuda=11.8 -c pytorch -c nvidia

* pip install pandas scipy tqdm matplotlib seaborn scikit-
learn transformers openpyxl PyWavelets librosa

e pip install datasets

* pip install openai

* pip install azure-cognitiveservices-speech
* pip install jiwer

The test the performance of the attack, download the
reconstructed audio from https://zenodo.org/records/
14736347 and run the python scripts included in the built
conda environment.

A.3.2 Basic Test

To evaluate the Word Error Rates (WER) transcrip-
tion results from the CSV files provided, run Eval-
uation_Results/Transcription/evaluation_wer.py by
changing the CSV file path to the evaluation exper-
iment. To test the fine-tuning on digit recognition
by the running the following command: python3 Hu-
BERT _emispeech_pre_trained_digit_Classifier.py —json_file
sample.json by changing the path in sample.json file to the
following:

’[Feasibility/FSDD’.

To run the speaker recognition, replace ’digit’ in the script
name with ’speaker’ and run the following command: python3
HuBERT _emispeech_pre_trained_speaker_Classifier.py
—json_file sample.json

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The results shown in Tables 4, 5, 6, 7, and 8 for digit
and speaker recognition can be achieved by fine-tuning
the HUBERT model on the FSDD dataset reconstructed
from the attack (provided in this artifact).

(C2): The speech transcription results shown in Table 4,
5, and 8 can be reproduced by running the transcrip-
tion_hubert.py, transcription_OpenAl.py, and transcrip-
tion_mirosoft.py scripts on the corresponding data as
explained in A.4.2.

A4.2 Experiments

(E1): [Generality across off-the-shelf PDM Microhpones |
[10 human-minutes + 5 compute-hour]: This experiment
reproduces the results shown in Table 4
How to: In this experiment we run the FSDD and Har-
vard Sentences data collected from different PDM micro-
phones to achieve speech recognition and transcription
respectively.

Preparation: To get the fine-tune digit and speaker
recognition results, edit the path for the dataset in the
sample.json file with the following directories

* ’/PDMs/Knowles/FSDD’

* ’/PDMs/STM/FSDD’

* ’/PDMs/TDK-41350/FSDD’

* ’/PDMs/TDK-T3902/FSDD’

* ’/PDMs/VM3000/FSDD’
To run speech transcription using HuBERT, OpenAl, and
Microsoft Speech Studio, change the directory path in
transcription_hubert.py, transcription_OpenAl.py, and
transcription_mirosoft.py scripts with the below paths
iteratively.

¢ ’/PDMs/Knowles/Harvard_Sentences’

* ’/PDMs/STM/Harvard_Sentences’

 ’/PDMs/TDK-41350/Harvard_Sentences’

» ’/PDMs/TDK-T3902/Harvard_Sentences’

¢ ’/PDMs/VM3000/Harvard_Sentences’
Execution: Run the following script to fine-tune
the digit and speaker recognition models: python3
HuBERT _emispeech_pre_trained_digit_Classifier.py —
Jjson_file sample.json. (Replace ’digit’ in the file name
with ’speaker’ to run fine-tuning on speaker recognition)
Run the following commands to run the speech transcrip-
tion models

* python transcription_hubert.py

e python transcription_OpenAl.py

* python transcription_microsoft.py
Results: The results for the fine-tuning models will be
printed on the console. The results can also be saved into
a log file to check the final model performance. Note
that the classification accuracy can vary slightly due to
randomized train-val split. The results from the transcrip-
tion scripts will be saved to csv files with the audio file
name and the corresponding transcription results. Eval-
uation_Results/Transcription/evaluation_wer.py can be
used to extract the Word Error Rate (WER) from tran-
scription results in CSV files.

https://zenodo.org/records/14736347
https://zenodo.org/records/14736347

(E2): [Behind the Wall Scenarios | [10 human-minutes + 5

compute-hour]: This experiment reproduces the results
shown in Table 5

How to: In this experiment we run the FSDD and Har-
vard Sentences data collected from behind-the-wall sce-
narios.

Preparation: To get the fine-tune digit and speaker
recognition results, edit the path for the dataset in the
sample.json file with the following directories

* ’/Behind_the_wall/Audio_Microphone/FSDD’

* ’/Behind_the_wall/Loop/15¢cm/FSDD’

* ’/Behind_the_wall/Loop/20cm/FSDD’

* ’/Behind_the_wall/Loop/25cm/FSDD’

* ’/Behind_the_wall/Copper/15¢cm/FSDD’

* ’/Behind_the_wall/Copper/20cm/FSDD’

* ’/Behind_the_wall/Copper/25¢cm/FSDD’
To run speech transcription using HuBERT, OpenAl, and
Microsoft Speech Studio, change the directory path in
transcription_hubert.py, transcription_OpenAl py, and

transcription_mirosoft.py scripts with the below paths
iteratively.

¢ ’/Behind_the_wall/Audio_Microphone/Harvard_Sentences’

¢ ’/Behind_the_wall/Loop/15cm/Harvard_Sentences’

¢ ’/Behind_the_wall/Loop/20cm/Harvard_Sentences’

¢ ’/Behind_the_wall/Loop/25cm/Harvard_Sentences’

¢ ’/Behind_the_wall/Copper/15cm/Harvard_Sentences’

* ’/Behind_the_wall/Copper/20cm/Harvard_Sentences’

¢ ’/Behind_the_wall/Copper/25cm/Harvard_Sentences’
Execution: Run the following script to fine-tune
the digit and speaker recognition models: python3
HuBERT_emispeech_pre_trained_digit_Classifierpy —
Jjson_file sample.json. (Replace ’digit’ in the file name
with ’speaker’ to run fine-tuning on speaker recognition)
Run the following commands to run the speech transcrip-
tion models

* python transcription_hubert.py
* python transcription_OpenAlpy
* python transcription_microsoft.py

Results: The results for the fine-tuning models will be
printed on the console. The results can also be saved into
a log file to check the final model performance. Note
that the classification accuracy can vary slightly due to
randomized train-val split. The results from the transcrip-
tion scripts will be saved to csv files with the audio file
name and the corresponding transcription results. Eval-
uation_Results/Transcription/evaluation_wer.py can be
used to extract the Word Error Rate (WER) from tran-
scription results in CSV files.

(E3): [Long Distance Experiments | [10 human-minutes + 5

compute-hour]: This experiment reproduces the results
shown in Table 6

How to: In this experiment we run the FSDD data col-
lected from long distances in behind-the-wall scenarios.
Preparation: To get the fine-tune digit and speaker
recognition results, edit the path for the dataset in the
sample.json file with the following directories

* ’/Long_Distance/lm’
¢ ’/Long_Distance/2m’
* ’/Long_Distance/3m’
* ’/Long_Distance/4m’

Execution: Run the following script to fine-tune
the digit and speaker recognition models: python3
HuBERT_emispeech_pre_trained_digit_Classifier.py —
Jjson_file sample.json. (Replace ’digit’ in the file name
with ’speaker’ to run fine-tuning on speaker recognition)
Results: The results for the fine-tuning models will be
printed on the console. The results can also be saved into
a log file to check the final model performance. Note
that the classification accuracy can vary slightly due to
randomized train-val split.

(E4): [Room Scenario Evaluation | [10 human-minutes + 5

compute-hour]: This experiment reproduces the results
shown in Table 7

How to: In this experiment we run the FSDD data col-
lected from long distances in behind-the-wall scenarios.
Preparation: To get the fine-tune digit and speaker
recognition results, edit the path for the dataset in the
sample.json file with the following directories

¢ ’/Long_Distance/lm’

¢ ’/Room_Scenarios/Concrete_wall’

¢ ’/Room_Scenarios/Oriented’

* ’/Room_Scenarios/Through_Monitor’

Execution: Run the following script to fine-tune
the digit and speaker recognition models: python3
HuBERT _emispeech_pre_trained_digit_Classifier.py —
Jjson_file sample.json. (Replace ’digit’ in the file name
with ’speaker’ to run fine-tuning on speaker recognition)
Results: The results for the fine-tuning models will be
printed on the console. The results can also be saved into
a log file to check the final model performance. Note
that the classification accuracy can vary slightly due to
randomized train-val split.

(ES): [Automated Fine-tuning Evaluation] [10 human-

minutes + 20 compute-hour]: This experiment will auto-
matically reproduce all the fine-tuning results discussed
until now.

How to: In this experiment we automatically run the
FSDD fine-tuning on all the data.

Preparation: To get the fine-tuned digit and speaker
recognition results, prepare the data as follows:

* ’unzip Evaluation_Scripts.zip’
¢ ’cd Evaluation_Scripts’
¢ ’chmod +x evaluate.sh’

Execution: Run the following command to fine-tune
and test the digit and speaker recognition models for all
the data: ’./evaluate.sh’.

Results: Upon running evaluate.sh, all compressed
FSDD data directories are automatically extracted into
the same directory as the script. Following extraction,
the digit and speaker recognition pipelines are exe-
cuted sequentially. Each pipeline generates a corre-
sponding results directory—suffixed with either _digit
or _speaker—within the same path. These result fold-
ers contain all relevant artifacts, including fine-tuning
logs, training and testing metrics, confusion matrices,
and model checkpoints.

(E6): [Automated Transcription Evaluation] [10 human-
minutes + 2 compute-hour]: This experiment will au-
tomatically reproduce all the transcription results dis-
cussed until now.

How to: In this experiment we automatically run the
speech transcription on all the data.

Preparation: To get the speech transcription, prepare
the data as follows:

* ’cd Evaluation_Scripts’
* ’chmod +x evaluate_transcription.sh’

Execution: Run the following command to get tran-
scription for all the Harvard_Sentences data: ’./evalu-
ate_transcription.sh’.

Results: Upon running evaluate_transcription.sh, all rel-
evant audio directories containing Harvard Sentences
are processed from the same directory as the script. The
transcription evaluation is performed sequentially using
HuBERT (local), OpenAl Whisper API, and Microsoft
Azure Speech API. Each backend generates a corre-
sponding CSV output, prefixed with the backend name
(e.g., hubert_, openai_, microsoft_) and suffixed with the
name of the data directory. All transcription results are
stored in a shared transcription_results folder alongside
the script.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

