
USENIX Security ’25 Artifact Appendix:
Encrypted Access Logging for Online Accounts:

Device Attributions without Device Tracking

Carolina Ortega Pérez∗

Cornell University
Alaa Daffalla∗

Cornell University
Thomas Ristenpart

Cornell Tech

A Artifact Appendix

A.1 Abstract
Our artifact implements the protocol described in Section 4
of our paper. The artifact is composed of a simulator.py
file, that can be used to run the end-to-end login and log
retrieval algorithms from our protocol and a README ex-
plaining how to do so. Additionally, we have a server2.py,
a client2.py and an encryptor2.py files, which represent
the server, client, and encryptor components, respectively, of
our protocol. At a high level, the server sends data related to
the encrypted log of actions to the client, and the client sends
requests to the encryptor to perform cryptographic operations.
As mentioned throughout the paper, the protocol is agnostic
to the authentication mechanism.

Moreover, our prototype includes files encryptor_
entry_size.py and algorithms_payload_size.py that
provide the size measurements (in bytes) for individual com-
ponents, enough to analyze the payload of the remaining func-
tions. We report the results from the prototype in Section 7 of
our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our prototype fetches the serial number of the device on
which it is running. However, the program runs locally and
does not send this information anywhere or stores it persis-
tently. Besides this, our prototype does not involve any human
subjects or personal data. All account and authentication data
is synthetic, for example we use synthetic randomly gener-
ated cookies, session identifiers, and user and relying party
information.

A.2.2 How to access

Our artifact is publicly available in GitHub at https://
github.com/alaadaff/csal_code and Zenodo at https:
//zenodo.org/records/14737179. .

*Authors contributed equally to this work.

A.2.3 Hardware dependencies

Our code is developed for and compiled on a MacOS device.
We performed our experiments on a MacBook Pro with an
M1 CPU and 8 GB of RAM running Sonoma v.14.6. We have
not tested it on other operating systems or devices.

The only OS-dependent code is the function that re-
trieves the device’s serial number, which utilizes macOS’s
system_profiler. This command does not require root priv-
ileges. The function is implemented in the def getSerial()
function within the encryptor2.py file.

To adapt this code for other operating systems, replacing
the function’s implementation with an equivalent command
should be sufficient. For example:

• On Windows, the serial number can be fetched using the
wmic bios get serialnumber command.

• On Linux, the serial number can be obtained using the
dmidecode -s system-serial-number command.

However, we note that both the Windows and Linux com-
mands may require administrator or root privileges. We have
not tested the code on these platforms.

A.2.4 Software dependencies

Our artifact is written in Python and requires installing the
cryptography library version 42.0.5 and the pyhpke library
version 0.5.3.

A.2.5 Benchmarks

None.

A.3 Set-up

To set up our prototype, all that is needed is downloading the
code from Zenodo.

https://github.com/alaadaff/csal_code
https://github.com/alaadaff/csal_code
https://zenodo.org/records/14737179
https://zenodo.org/records/14737179
https://pypi.org/project/cryptography/
https://pyhpke.readthedocs.io/en/latest/


A.3.1 Installation

Our artifact can be downloaded from https://zenodo.org/
records/14737179. It is implemented in Python and re-
quires the cryptography and pyhpke libraries. These can be
installed by running pip install -r requirements.txt.

A.3.2 Basic Test

Running python3 simulator.py -e login-no-smuggle
-i 1 should open two new terminals simulating a server and
client respectively. It should run without any error, and print
some performance values.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The payload for a login without key smuggling be-
tween the server and the client is 1,687 B. The response
back to the client takes 3,224 B. The round-trip for one
login takes 7ms (CPU time for both server and client to
complete operations). This is reported in Section 7, in
the login evaluation.

(C2): A log can be retrieved from the server and decrypted
locally to display the log entries. The decrypted log
contains the serial number of the device on which it is
running. This is reported in Section 7, in the log retrieval
evaluation.

(C3): A log retrieval payload from the server takes 2,482 B
(no smuggling) and 2,631 B with smuggling. This is
reported in Section 7, in the log retrieval evaluation.

(C4): A re-encryption request for a single session to be re-
encrypted takes 2,653 B. This is reported in Section 7,
in the re-encryption evaluation.

(C5): An entry in the encryptor database takes 2,263 B. This
is reported in Section 7, in the login evaluation.

A.4.2 Experiments

(E1): [login (no smuggle)] [approx. 1 human-minutes + 1
compute-minute]: Runs a login flow, sends data from
the server to the client to the encryptor and back. This
measures the login without key smuggling.
How to: Run the command python3 simulator.py
-e login-no-smuggle -i 1.
Results: The experiment opens two terminals, which
print the CPU time and the payload size.

(E2): [log retrieval] [approx. 1 human-minutes + 1 compute-
minute]: Runs a log retrieval flow, sends data from the
server to the client to the encryptor, where the log is
decrypted and printed.
How to: Run the command python3 simulator.py
-e history -i 2.

Results: The experiment opens two terminals, which
retrieves the log showing decrypted log entries.

(E3): [log retrieval] [approx. 1 human-minutes + 1 compute-
minute]: Computes the payload size for a single log
retrieved from server.
How to: Run the command python3 log_
retrieval2.py.
Results: The experiment prints the size of a single log
returned from the server during log retrieval.

(E4): [other algorithm payloads] [approx. 1 human-minutes
+ 1 compute-minute]: Computes the payload size for
re-encryption and action.
How to: Run the command python3 algorithms_
payload_size.py.
Results: The experiment prints the size of the payload
at the different stages of the re-encryption and action.

(E5): [encryptor storage] [approx. 1 human-minutes + 1
compute-minute]: Computes the size of the different com-
ponents in an encryptor entry.
How to: Run the command python3 encryptor_
entry_size.py.
Results: The experiment prints the size of each element
on each row of an encryptor entry.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://zenodo.org/records/14737179
https://zenodo.org/records/14737179
https://pypi.org/project/cryptography/
https://pyhpke.readthedocs.io/en/latest/
https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


