ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

ARTIFACT
EVALUATED
zusenix

»

AVAILABLE REPRODUCED

USENIX Security *25 Artifact Appendix: Qelect: Lattice-based Single
Secret Leader Election Made Practical

Yunhao Wang
Yale University

A Artifact Appendix
A.1 Abstract

Our artifact is a C++ library implementing the main sin-
gle secret leader election protocol Qelect in [2]. Our
main results aimed to be produced from this artifact
are 1) the local computation time with party size in
{32,64,128,256,512,1024,2048}, and 2) the communica-
tion time of 128 parties under both LAN and WAN settings.
Our main claim in [2] (which is the same as in the submission
version) uses the party size G = 128 as in section 7.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our artifact should not pose any risk to the evaluators regard-
ing security, or data privacy. None does our artifact has any
ethical concerns. The testing data, key pairs and communica-
tions are all simulations with no real impact. Despite all these,
we still recommend the evaluators start a fresh AWS EC2
instance without testing our code using their own machines.

A.2.2 How to access

Our code is public on Zenodo, which is also the version in
our final submission.

A.2.3 Hardware dependencies

Our main runtime results should be reproducible on AWS
EC2 c6i.2xlarge instances with 8 vCPU, 16GB RAM and
Intel Xeon Scalable processors. Note that we do not make
an explicit assumption on the network latency, but estimate
the communication time based on the EC2 network directly.
Corresponding latency figures are also documented in section
7 of our final submission (same as in the full version [2]).

A.2.4 Software dependencies

On a standard AWS EC2 c6i.2xlarge instance, we run the
benchmarks with boot disk configured with Ubuntu 24.04
LTS operating system.

We also rely on the following software and libraries:

Fan Zhang
Yale University

¢ C++ build environment
¢ CMake build infrastructure
¢ Docker environment to run our simulation

* SEAL library 4.1 (or latest version) and all its dependen-
cies

* PALISADE library release v1.11.9 and all its dependen-
cies

A detailed installation script is provided in the
README.md file in our artifact. Again, all secrets and data
are simulated, and thus no third-party models/datasets are
used.

A.2.5 Benchmarks

We benchmarked our main SSLE protocol Qelect presented in
section 6 in [2] (and as in our final submission version). The
party size we provided to be tested for evaluators in the docker
is G € {32,64,128,256,512,1024,2048}, which covers our
main claim w.r.t. party size G = 128 as in section 7.

A.3 Set-up
A.3.1 Installation

The installations and tests could be broken into two parts. One
for local computation and the other for communication simu-
lation between multiple parties. To recover the runtime of our
major claim w.r.t. the party size G = 128, we first show how
to launch such 128 AWS instances with proper configurations.
Notice that later we would also simulate the local compu-
tation for G € {32,64,128,256,512,1024,2048}, while the
communication time will be estimated only for G = 128 under
both LAN and WAN settings.

Instance configuration

1. In AWS console, under the region AWS us-east-2 (Ohio),
create key pair named ssle_us_east, which will automat-
ically get its pem file (rename to ssle.pem) downloaded
to local.

https://doi.org/10.5281/zenodo.14735800

2. In AWS console, under other three AWS regions:
us-west-1 (California), eu-west-1 (Ireland), and
ap-southeast-1 (Singapore), import the previously
downloaded ssle.pem file to the corresponding
ssle_us_west,ssle_eu_west,ssle_ap_southeast (so that
the key pairs under all four regions are actually the
same). This step is to guarantee that the evaluators could
be able to control all instances simultaneously, in order
to simulate the broadcast in between.

3. In AWS console, under four AWS regions: AWS us-
east-2 (Ohio), us-west-1 (California), eu-west1 (Ireland),
and ap-southeast-1 (Singapore), create a launch template
with the following configuration:

 Application and OS Images: ubuntu 24.04, x86_64
* Instance type: c6i.2xlarge

* Key pair: select the corresponding ssle_|[region]
key pair just created

* Network setting: create security group and corre-
sponding VPC that allows for any IPv4 address in
both the inbound and outbound rules.

4. In AWS console, launch 128 instances under AWS us-
east-2 (Ohio) (this will be used to simulate the com-
munication under LAN); launch 32 instances under all
other three regions respectively. In generally, with G,
uniformly distribute the instances across all four regions
to simulate the communication under WAN setting.

Local computation setup Ssh to one of the instances under
AWS us-east-2 (Ohio) Note that the following installation
only needs to be performed on a single AWS EC2 instance.

install docker

sudo apt-get update

sudo apt-get install -y ca-certificates curl

sudo curl -fsSL https://download.docker.com \
/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
sudo chmod a+r /etc/apt/keyrings/docker.asc

echo \

"deb [arch=$(dpkg --print-architecture)
signed-by=/etc/apt/keyrings/docker.asc]
https://download.docker.com/linux/ubuntu \

$(. /etc/os-release && echo
"SUBUNTU_CODENAME") stable" | \

sudo tee /etc/apt/sources.list.d/docker.list
> /dev/null

sudo apt-get update

sudo apt-get install -y docker-ce docker-ce-cli
containerd.io docker-buildx-plugin
docker-compose-plugin

execute the MPE

sudo apt install -y unzip

wget https://zenodo.org/records/14854598/files/\
wyunhao/Qelect-v3.2.zip

unzip Qelect-v3.2.zip

cd <directory_name_unzipped>

sudo docker build --no-cache -t ssle_project

Communication setup To recover our estimated commu-
nication time under both LAN and WAN settings, we also
need to equip all launched instances with proper files. Look-
ing ahead, we simulate the communication time by letting
them publish messages prepared beforehand. The following
steps are for WAN setting. One could follow exactly the same
procedure but only under AWS us-east-2 (Ohio) region for
LAN setting.

1. In AWS console, under four AWS regions, execute the
command in CloudShell (notice that this is a single-line
command):

--filters
"Name=instance-state-name, Values=running"
--instance-ids S$instance_id --query
"Reservations[*].Instances[*].PublicIpAddress’
-—output text

aws ec2 describe-instances

2. Copy all 128 IPv4 public addresses returned from AWS
CloudShell and put them in a single “ip.txt” file, one
IPv4 address a line. Note that in LAN setting, we would
have 128 IPv4 addresses directly for AWS us-east-2
(Ohio) region. Thus, when testing against WAN setting,
pick 32 out of them.

3. Upload the “ip.txt” file from local to all instances via the
following single-line command:

pscp -p 100 -h ip.txt -x "-i1 ssle.pem -0
StrictHostKeyChecking=no" -1 ubuntu ip.txt

4. Dump random bytes to simulate the ciphertexts' used
for broadcasting to all:

dd if=/dev/urandom of=IM.txt bs=1M count=1
And then also upload this simulated data to all instances:

pscp -p 100 -h ip.txt -x "-i ssle.pem -o
StrictHostKeyChecking=no" -1 ubuntu 1M.txt

5. Upload the ssle.pem file from local to all instances via
the following single-line command:

pscp -p 100 -h ip.txt -x "-i ssle.pem -0
StrictHostKeyChecking=no" -1 ubuntu ssle.pem .

I'For G = 128, we have the communication size to be around 983KB. We
use 1M data for simplicity.

6. Ssh to one of the instances and execute the following:

sudo apt-get update
sudo apt-get install -y build-essential
sudo apt -y install pssh

A.3.2 Basic Test

After installation, it should be easy to test the local computa-
tion, the evaluators could run the command:

After param generation.
Initial noise budget: 613
Lefted noise budget: 42

Total broadcast communication size ...: 67 MB.

Total number of parties: 32
Preprocessed time : 20446144 us.
Total time 1 2429615 us.

It shows that the local computation for one of the 32
parties takes around 2.4 seconds. The full log of our
docker execution should include runtime for party sizes in
{32,64,128,256,512,1024,2048}.

A.4 Evaluation workflow

The major results we want to reproduce here is the local
computation and communication time for party size G = 128.
To show evaluators the runtime trend, we consider a range of
party sizes aforementioned.

A.4.1 Major Claims

(C1): The local runtime of G > 20438 is less than 10 seconds.

(C2): The communication time for G = 128 under LAN set-
ting is around 25 seconds, and around 42 seconds under
WAN setting. Since our communications happen in par-
allel, while the major prior work [1]’s communications
run sequentially, we claim that our protocol is at least
two orders of magnitude faster than theirs.

A.4.2 Experiments

(E1): [Local Runtime] [<I human-minute]:
Preparation: Ssh to the instance with docker installed
and execute the command
Execution: sudo docker run ssle_project
Results: The last log block should look like the follow-
ing:

After param generation.

Initial noise budget: 613

Lefted noise budget: 47

Total broadcast communication size ...

4295 MB.

Total number of parties: 2048
Preprocessed time : 191495790 us.
Total time 6745102 us.

(E2): [LAN Communication] [<I human-minute]:
Preparation: Follow the same steps as in Ap-
pendix A.3.1 when preparing for the communication
tests, but use all 128 instances under the same region:
AWS us-east-2 (Ohio). Ssh to one of the instances.
Execution:

MY_IP=$ (curl https://ipinfo.io/ip)
time parallel-scp -p 100 -h ip.txt -x "-1i \

/home/ubuntu/ssle.pem -o StrictHostKeyChecking=no" \

-1 ubuntu IM.txt "$SMY_IP"_com.txt
Results: The final runtime log should be as follows.
The final communication time is doubled since we have
two rounds of broadcast. The evaluators could repeat the
execution step multiple times to take the average.

real Om2.192s
user Om13.059s
sys 0m0.520s

(E3): [WAN Communication] [<I human-minute
Preparation: Follow the same steps as in Ap-
pendix A.3.1 when preparing for the communication
tests, with 32 instances under each of the four regions.
Execution:

MY_IP=$ (curl https://ipinfo.io/ip)
time parallel-scp -p 100 -h ip.txt -x "-i \

/home/ubuntu/ssle.pem -o StrictHostKeyChecking=no" \

-1 ubuntu IM.txt "S$MY IP" com.txt
Results: The final runtime log should be as follows.
Same as before, we have two rounds in total and could
take average of multiple trials for estimation.

real Om8.772s
user 0m20.370s
Sys Oml.806s

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

References

[1] D. Boneh, A. Partap, and L. Rotem. Post-Quantum Sin-
gle Secret Leader Election (SSLE) From Publicly Re-
randomizable Commitments. Cryptology ePrint Archive,
Paper 2023/1241, 2023.

[2] Y. Wang and F. Zhang. Qelect: Lattice-based single se-
cret leader election made practical. Cryptology ePrint
Archive, Paper 2025/122, 2025.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

