ARTIFACT
EVALUATED EVALUATED
susenix susenix

ASSOCIATION @ Association

ARTIFACT

AVAILABLE

USENIX Security 25 Artifact Appendix: Recover from Excessive Faults
in Partially-Synchronous BFT SMR

Tiantian Gong

Purdue University Purdue University

Gustavo Franco Camilo

Kartik Nayak Andrew Lewis-Pye
Duke University LSE

Aniket Kate
Purdue University / Supra Research

A Artifact Appendix

A.1 Abstract

Byzantine fault-tolerant (BFT) state machine replication
(SMR) protocols form the basis of modern blockchains as
they maintain a consistent state across all blockchain nodes
while tolerating a bounded number of Byzantine faults. We
analyze BFT SMR in the excessive fault setting where the
actual number of Byzantine faults surpasses a protocol’s toler-
ance and in partial synchrony where the network experiences
a known bounded delay after an unknown global stabilization
time (GST). We devise the very first recovery algorithm
for linearly chained and quorum-based partially synchronous
SMR to recover from faulty states (i.e., correct replicas having
equivocating states) caused by excessive faults.

We implement and evaluate the recovery procedure for Hot-
Stuff, addressed as “recover-HotStuff”, in Rust. During imple-
mentation, we first test the performance of recover-HotStuff
against vanilla HotStuff in the fault-free setting. The through-
put resumes to the normal level (without excessive faults) after
recovery routines terminate for 7 replicas and is slightly re-
duced by < 4.3% for 30 replicas. The latency is increased by
12.87% for 7 replicas and 8.85% for 30 replicas on average.

We then evaluate the performance of recover-HotStuff in the
excessive fault setting. Each Byzantine replica is simulated
with multiple consensus instances where it sends contradict-
ing messages to honest replicas via different instances. We
demonstrate that the end-to-end latency and throughput re-
sume to normal level after recovery terminates. We then assess
how the average recovery time changes according to different
GST. The results indicate that the recovery time is roughly
logarithmic in the length of contradicting chains (which is
determined by GST).

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The execution of the artifact poses no risks to the evalua-
tors’ machines, data privacy, or security. The evaluation is

conducted within a controlled environment, specifically our
own Byzantine Fault-Tolerant (BFT) system. The equivoca-
tion is simulated and executed solely on this system, which is
isolated from external networks.

A.2.2 How to access

A stable version of the artifact is available at https:
//github.com/gFrancoCamilo/fault-free-recovery/
tree/c9326eb07d347702b898e4c5910a44b3a86986a3
for the fault free setting and at https://github.
com/gFrancoCamilo/one-shadow-recovery/tree/
781e8b06145bf13c3e£53d54b325dcabc06fccdb

for the one shadow setting. A zip file contain-
ing both settings can also be found at https:
//zenodo.org/records/15133737.

A.2.3 Hardware dependencies

For optimal performance, we estimate that each client or node
require at least one core. As a result, a machine with a min-
imum of 64 cores is recommended to reproduce the results.
We also recommend at least 16 GB of RAM, an NVMe SSD,
and a minimum of 30 GB to handle the code and the result
files.

A.2.4 Software dependencies

Our code requires a Linux-based OS with bash. No specific
distribution or version is required. Our experiments were run
on Ubuntu 22.04 LTS. To compile and run our artifact on a
local machine, the user must install the following softwares:

e Rust and Cargo: https://doc.rust-lang.org/
cargo/getting-started/installation.html

* Python 3.6: https://www.python.org/downloads/

e Tmux: https://github.com/tmux/tmux/wiki/
Installing

* Clang: https://clang.llvm.org/

https://github.com/gFrancoCamilo/fault-free-recovery/tree/c9326eb07d347702b898e4c5910a44b3a86986a3
https://github.com/gFrancoCamilo/fault-free-recovery/tree/c9326eb07d347702b898e4c5910a44b3a86986a3
https://github.com/gFrancoCamilo/fault-free-recovery/tree/c9326eb07d347702b898e4c5910a44b3a86986a3
https://github.com/gFrancoCamilo/one-shadow-recovery/tree/781e8b06145bf13c3ef53d54b325dca6c06fcc5b
https://github.com/gFrancoCamilo/one-shadow-recovery/tree/781e8b06145bf13c3ef53d54b325dca6c06fcc5b
https://github.com/gFrancoCamilo/one-shadow-recovery/tree/781e8b06145bf13c3ef53d54b325dca6c06fcc5b
https://zenodo.org/records/15133737
https://zenodo.org/records/15133737
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://www.python.org/downloads/
https://github.com/tmux/tmux/wiki/Installing
https://github.com/tmux/tmux/wiki/Installing
https://clang.llvm.org/

In Ubuntu 22.04, the user can install the requirements by
running:
$ sudo apt update
$ sudo apt-get install -y python3 tmux
clang python-is-python3 curl python3-pip git
$ curl https://sh.rustup.rs -sSf | sh
Make sure that cargo is in your $PATH after installation:
$ source SHOME/.cargo/env
In case Ubuntu 22.04 is not available, we recommend using
Podman or Docker to set up an Ubuntu 22.04 container:

e Podman: https://podman.io/

Once podman is installed, the user should run:
$ podman pull docker://ubuntu:22.04
$ podman run -it ubuntu:22.04 /bin/bash
$ apt update
$ apt-get install -y python3 tmux clang
python-is-python3 curl python3-pip git
$ curl https://sh.rustup.rs -sSf | sh
Finally, make sure that cargo is in your $PATH after instal-
lation:
$ source $HOME/.cargo/env

A.2.5 Benchmarks

Our artifact uses require a synthetic workload of transactions
to evaluate the performance of the system. Each transaction
is a fixed-size byte sequence, with a size specified by the user.
Therefore, no external benchmarks or datasets are required
for the experiments.

A.3 Set-up
A.3.1 Installation

You can get the code by cloning our git repositories:

$ git clone https://github.com/gFrancoCamilo/
one-shadow-recovery.git

$ git clone https://github.com/gFrancoCamilo/
fault-free-recovery.git

We also require a few additional Python libraries that as-
sist in plotting graphs and configuring the environment. We
provide a requirements.txt file containing all necessary
dependencies. To install the required Python libraries inside
the benchmark directory each installed directory, run:

$ pip install -r requirements.txt

A.3.2 Basic Test

Once all repositories are set up, navigate to the benchmark
directory within each repository and execute the command
fab localmal. If all prerequisites are correctly installed, the
user should see a message indicating "Running benchmark"
along with the duration of the experiment. After the experi-
ment completes, the 1ogs directory will contain log files for

each client and node. In the fault-free setting, a summary of
statistics will also be displayed, providing key metrics such as
throughput and latency. This output confirms that the system
is functioning correctly

A.4 Evaluation workflow
A4.1 Major Claims

(C1): In the fault-free setting, our recovery protocol presents
a slight decrease in throughput compared to the regular
consensus protocol and presents a slight increase in the
end-to-end latency.

(C2): In the excessive fault setting, our protocol returns the
latency and throughput to its normal state after the re-
covery procedure is done.

(C3): The recovery time increases linearly with the logarithm
of the number of blocks to retrieve.

A.4.2 Experiments

Our results are all obtained from Cloud-based experiments
on AWS. For the convenience of the artifact evaluation, we
provide comprehensive instructions for users to run the ex-
periments locally. The previous claims hold true in both local
and cloud-based experiments. The last claim (C3) depends
on the real-world network conditions, and the recovery time
evaluated from local experiments. For completeness, we have
included the instructions for running the experiments on AWS
in the wiki of our Github repositories to facilitate replication
of our results.

(E1): [Fault free-setting compared to vanilla Hotstuff] [1
human-minute + 2 compute-hour]: For this experiment,
we compare the throughput and latency of Hotstuff with
our protocol implementation in a fault-free setting and
the regular Hotstuff protocol.

Preparation: Fromthe fault—-free-recoverydi-
rectory:

$ cd benchmark

$ chmod +x get-results-figl.sh
Execution: From the benchmark directory, run:

$./get-results-figl.sh 10_000 120_000
75
This script executes our recovery protocol with 7 nodes,
starting at an input rate of 10,000 transactions per sec-
ond and incrementing by 10,000 transactions per second
up to a maximum of 120,000 transactions per second.
Each input rate is tested 5 times to ensure robust and
reliable results.
Additionally, the script clones the vanilla Hotstuff code-
base, runs it with the same parameters and copy the
results to a results directory.
Run the same script for 30 nodes:

$./get-results-figl.sh 10_000 120_000
30 5

https://podman.io/
https://github.com/gFrancoCamilo/one-shadow-recovery.git
https://github.com/gFrancoCamilo/one-shadow-recovery.git
https://github.com/gFrancoCamilo/fault-free-recovery.git
https://github.com/gFrancoCamilo/fault-free-recovery.git

Results: Change the plot settings in fabfile.py
to ’‘nodes’: [7, 30], ’"faults’: [0, 1],
‘max_latency’: [9_000]. Finally, run:

$ fab plot
The graph should be in the plots directory under the
name of latency . pdf. The user will observe a graph
similar to Figure 2 with our results following the vanilla
Hotstuff with a slight decrease in throughput and latency.
This supports C1.

(E2): [Normalized throughput and latency after recovery] [1

human-minute + 20 compute-minutes]:
Preparation: From the one-shadow-recovery
directory:

$ cd benchmark
We created a setup—env. py Script to assist in gen-
erating the required setup files. The script has multiple
options, which can be checked with the —h flag. To re-
produce our settings, run the command.:

$ python3 setup-env.py -n 31 -1 7 -c 2
-a 60
Then, change the 1ocalmal settings in fabfile.py
to "nodes’ : 31and ’"duration’: 300.
Make sure that the execution script has the correct per-
missions:

$ chmod +x run-fig3-and-fig4.sh
Execution: From the benchmark directory, run:

$./run-fig3-and-fig4.sh
Results: The results for Figures 3 and 4
can be found in the plots directory, under
the filenames tps-recovery-node0. pdf,
tps—-recovery-nodel. pdf, and
latency-comparison.pdf. In the
tps—recovery graphs, users will observe
periodic spikes at fixed intervals. The intervals become
shorter towards the end of the graph and after the
second recovery procedure. In the latency comparison
graph, a significant reduction in latency after the
recovery is noticeable. This supports C2.

(E3): [Linearity of the recovery time] [l human-minute + 2

compute-hour]:
Preparation: From the one-shadow-recovery
directory:

$ cd benchmark
Execution: We created a run—-experiments.py
script to assist in generating the results. Run the com-
mand:

$ python3 run-experiments.py
Results: Finally, run:

$ python3 plot_fig5.py
The graph for Figure 5 should be on the plots direc-
tory with the name recovery-time. pdf. The graph
should be similar to Figure 5 and the user should ob-
serve a linearly increasing recovery time. This supports
C3.

A.5 Notes on Reusability

We provide the setup-env.py script to enhance the reusabil-
ity of our artifact, enabling users to customize experiments
beyond the paper’s scope. This script allows users to config-
ure the number of honest and malicious replicas, set network
delays for local testing, and define a custom number of chains
for equivocation scenarios. Additionally, as the benchmark
vanilla HotStuff codebase, users can test multiple input rates
for transactions and adjust transaction sizes to fit their specific
use cases. The code is modularized, with easily identifiable
components such as consensus, network, and store, making
it easy for researchers and developers to modify, extend, or
adapt it to their preferred tools and scenarios.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

